当前位置:首页 > 智能硬件 > 人工智能AI
[导读] 今天我们重点探讨一下多层感知器MLP。  感知器(Perceptron)是ANN人工神经网络的一个概念,由Frank Rosenblatt于1950s第一次引入。 单层

今天我们重点探讨一下多层感知器MLP。 

感知器(Perceptron)是ANN人工神经网络的一个概念,由Frank Rosenblatt于1950s第一次引入。

单层感知器(Single Layer Perceptron)是最简单的ANN人工神经网络。它包含输入层和输出层,而输入层和输出层是直接相连的。单层感知器仅能处理线性问题,不能处理非线性问题。今天想要跟大家探讨的是MLP多层感知器。

MLP多层感知器是一种前向结构的ANN人工神经网络, 多层感知器(MLP)能够处理非线性可分离的问题。

MLP概念:

MLP多层感知器(MulTI-layerPerceptron)是一种前向结构的人工神经网络ANN,映射一组输入向量到一组输出向量。MLP可以被看做是一个有向图,由多个节点层组成,每一层全连接到下一层。除了输入节点,每个节点都是一个带有非线性激活函数的神经元。使用BP反向传播算法的监督学习方法来训练MLP。MLP是感知器的推广,克服了感知器不能对线性不可分数据进行识别的弱点。

相对于单层感知器,MLP多层感知器输出端从一个变到了多个;输入端和输出端之间也不光只有一层,现在又两层:输出层和隐藏层。

基于反向传播学习的是典型的前馈网络, 其信息处理方向从输入层到各隐层再到输出层,逐层进行。隐层实现对输入空间的非线性映射,输出层实现线性分类,非线性映射方式和线性判别函数可以同时学习。

MLP激活函数

MLP可使用任何形式的激活函数,譬如阶梯函数或逻辑乙形函数(logisTIc sigmoid funcTIon),但为了使用反向传播算法进行有效学习,激活函数必须限制为可微函数。由于具有良好可微性,很多乙形函数,尤其是双曲正切函数(Hyperbolictangent)及逻辑乙形函数,被采用为激活函数。

激活函数的作用是将非线性引入神经元的输出。因为大多数现实世界的数据都是非线性的,希望神经元能够学习非线性的函数表示,所以这种应用至关重要。

MLP原理:

前馈神经网络是最先发明也是最简单的人工神经网络。它包含了安排在多个层中的多个神经元。相邻层的节点有连接或者边(edge)。所有的连接都配有权重。

一个前馈神经网络可以包含三种节点:

1)输入节点(Input Nodes):也称为输入层,输入节点从外部世界提供信息,。在输入节点中,不进行任何的计算,仅向隐藏节点传递信息。

2)隐藏节点(Hidden Nodes):隐藏节点和外部世界没有直接联系。这些节点进行计算,并将信息从输入节点传递到输出节点。隐藏节点也称为隐藏层。尽管一个前馈神经网络只有一个输入层和一个输出层,但网络里可以没有也可以有多个隐藏层。

3)输出节点(Output Nodes):输出节点也称为输出层,负责计算,并从网络向外部世界传递信息。

在前馈网络中,信息只单向移动——从输入层开始前向移动,然后通过隐藏层,再到输出层。在网络中没有循环或回路。

MLP多层感知器就是前馈神经网络的一个例子,除了一个输入层和一个输出层以外,至少包含有一个隐藏层。单层感知器只能学习线性函数,而多层感知器也可以学习非线性函数。

一般采用BP反向传播算法来训练MPL多层感知器。采用BP反向传播算法就像从错误中学习。监督者在人工神经网络犯错误时进行纠正。MLP包含多层节点;输入层,中间隐藏层和输出层。相邻层节点的连接都有配有权重。学习的目的是为这些边缘分配正确的权重。通过输入向量,这些权重可以决定输出向量。在监督学习中,训练集是已标注的。这意味着对于一些给定的输入,能够知道期望的输出(标注)。

MLP训练过程大致如下:

1)所有边的权重随机分配;

2)前向传播:利用训练集中所有样本的输入特征,作为输入层,对于所有训练数据集中的输入,人工神经网络都被激活,然后经过前向传播,得到输出值。

3)反向传播:利用输出值和样本值计算总误差,再利用反向传播来更新权重。

4)重复2)~3), 直到输出误差低于制定的标准。

上述过程结束后,就得到了一个学习过的MLP网络,该网络被认为是可以接受新输入的。

MLP优点:

1)高度的并行处理;

2)高度的非线性全局作用;

3)良好的容错性;

4)具有联想记忆功能;

5)非常强的自适应、自学习功能。

MLP缺点:

1)网络的隐含节点个数选取非常难;

2)停止阈值、学习率、动量常数需要采用”trial-and-error”法,极其耗时;

3)学习速度慢;

4)容易陷入局部极值;

5)学习可能会不够充分。

MLP应用:

MLP在80年代的时候曾是相当流行的机器学习方法,拥有广泛的应用场景,譬如语音识别、图像识别、机器翻译等等,但自90年代以来,MLP遇到来自更为简单的支持向量机的强劲竞争。近来,由于深层学习的成功,MLP又重新得到了关注。

常被MLP用来进行学习的反向传播算法,在模式识别的领域中算是标准监督学习算法,并在计算神经学及并行分布式处理领域中,持续成为被研究的课题。MLP已被证明是一种通用的函数近似方法,可以被用来拟合复杂的函数,或解决分类问题。

结语:

MLP多层感知器是一种前向结构的ANN人工神经网络, 它能够处理非线性可分离的问题,值得深入研究。为了实现MLP多层感知器,会用到BP反向传播算法。MLP可使用任何形式的激活函数,但为了使用反向传播算法进行有效学习,激活函数必须限制为可微函数。MLP算法应用范围较广,扩展性也强,可应用于语音识别、图像识别、机器翻译等领域。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭