当前位置:首页 > 半导体 > ADI
[导读]针对电力公司应用的创新不止局限于监测消耗电网能源的硬件设备,现在还可提供分析功能,旨在了解以前无法在现场跟踪的电表精度。

针对电力公司应用的创新不止局限于监测消耗电网能源的硬件设备,现在还可提供分析功能,旨在了解以前无法在现场跟踪的电表精度。我们与Helen Electricity Network(芬兰赫尔辛基的配电系统运营商)和Aidon(北欧地区知名的智能电网、智能电表技术和服务提供商)合作,运用ADI公司先进的终端-云电表分析解决方案(采用mSure®技术)Energy Analytics Studio进行了现场试验。该解决方案可监控部署电表使用寿命内的精度,并检测多种窃电类型。电表精度监测尤其与芬兰市场关系密切,这也是本次试验的重点。

利用ADI的mSure技术实现电表精度监测

图1. 部署在现场的试点设备。

精度监测的价值

随着时间的流逝,部署在工业、市政和住宅环境中的电表,易受恶劣天气、不可预知的载荷、雷电等各种条件影响。因此,电表的测量精度可能偏移或改变,导致超额计费或计费不足,需要花费大量时间和金钱来解决由此产生的问题,却无法在出现问题之后立即找出错误,或者提前预防出错。

更糟糕的是,电力公司会因电表精度问题导致错误计费而丧失客户的信任。如今,大多数电力公司开始定期抽样检测,并定期更换电表,但这种方法不仅成本高昂,而且会对用电用户造成干扰。

该解决方案采用一项名为mSure的新技术,可以现场集成到各个新电表中,并通过基于云的分析服务来持续监测和现场报告每个电表的测量精度。电力公司可以通过该分析服务了解部署的所有电表的精度,及早解决电表问题,快速更换不符合精度要求的电表,以及在法规允许的情况下减少和消除电表抽样检测,从而也更好的发挥了AMI网络现存的优势。

利用ADI的mSure技术实现电表精度监测

图2. 通过基于云的分析服务查看电表的精度。

此外,由于可再生能源、电动汽车充电等因素的影响,能源消费变得更加动态,消费者的电费支出浮动更大,这些都会导致消费者咨询或投诉。该解决方案支持电力公司快速评估特定电表的精度,避免了成本高昂的现场查看,因此提高了客户的满意度。

现场试验部署

自2018年8月以来,Helen Electricity Network通过基于云的分析服务,使用现场部署的mSure技术查看了40多台评估设备的电表精度信息。芬兰的一家独立测试公司VTT/MIKES对这些设备的精度进行了验证。第1阶段:从现场拆除了19台正常使用的设备进行精度测试,于2018年10月得到测试结果。第2阶段:由VTT/MIKES对这19台设备实施加速寿命测试,于2019年11月得到测试结果。使用高精度测试设备进行测试,以在试验前找到所有设备的基准精度,并验证设备的精度偏移。VTT/MIKES测试以及第2阶段后实施分析服务得出的偏移结果如图3所示。

利用ADI的mSure技术实现电表精度监测

图3. 第2阶段设备的偏移范围。

将基于云的分析服务配合与主电表串联的本地安装评估设备一起使用。图1所示的评估设备采用ADI的ADE9153B电能计量IC,集成mSure技术来实现先进的诊断功能。通过这种方式,电表将原始诊断信息发送至分析服务,经过分析后提供警示信息,观察发展趋势,并提供电表的健康状况报告。在实际部署中,电力公司可以部署基于ADE9153B电能计量芯片的电表,并使用分析服务无缝利用mSure的技术优势。

现场试验结果

在第1阶段,将来自基于云的分析服务的数据与VTT/MIKES执行的参考测量结果进行比较,结果显示,对于这19台设备,分析服务可以跟踪优于0.1%的精度偏移。对所有19台设备严格分组,近 0%显示最小偏移。

在第2阶段,这些电表可以在加速环境中老化8个月,用于模拟电表在30°C平均环境温度下使用大约10年的情形。第2阶段在受控的实验室环境中进行,而不是在现场进行,以便准确评估分 析服务的性能,并加快这些电表的老化过程。与第1阶段类似,跟踪的这19台设备的精度偏移优于0.1%(如图4所示),精度测试和分析服务均显示平均负偏移约为–0.05%。

利用ADI的mSure技术实现电表精度监测

图4. 在第2阶段,分析服务和VTT加速寿命测试偏移结果之间的设备差异。

实验室中还采用人工方法使一个电表老化,以显示分析服务准确跟踪较大偏移的能力。实验人员将电阻与锰铜分流器并联来更改阻抗,以实现人工老化。VTT/MIKES测量这种老化引起的偏移,测量值为-1.91%,而分析服务确定电表的精度偏移为-1.96%,二者之间只有0.05%的差异。

综上所述,第1阶段的现场试验表明,分析服务能够非常准确地跟踪现场部署的支持mSure技术电表的精度,精度误差在0.1%以内,但这个阶段的电表偏移很小。在第2阶段,即模拟电表在现场使用10年后的状况时,精度测试和分析服务都显示电表按负方向偏移,并持续以0.1%级别误差进行精度偏移跟踪。现场试验证明。mSure技术与分析服务相结合,能够以足够的精度监测电表误差偏移,并取代电表抽样测试。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭