当前位置:首页 > 工业控制 > 电子设计自动化
[导读]先简单介绍下同步时序和异步时序逻辑,看下他们的异同点。

先简单介绍下同步时序和异步时序逻辑,看下他们的异同点。

同步时序逻辑是指表示状态的寄存器组的值只可能在唯一确定的触发条件发生时刻改变。只能由时钟的正跳沿或负跳沿触发的状态机就是一例。always @(posedge clock) 就是一个同步时序逻辑的触发条件, 表示由该 always 控制的 begin end 块中寄存器变量重新赋值的情形只有可能在 clock 正跳沿发生。

而异步时序逻辑是指触发条件由多个控制因素组成,任何一个因素的跳变都可以引起触发。记录状态的寄存器组其时钟输入端不是都连结在同一个时钟信号上。例如用一个触发器的输出连结到另一个触发器的时钟端去触发的就是异步时序逻辑。

用 Verilog HDL 设计的可综合模块,必须避免使用异步时序逻辑,这不但是因为许多综合器不支持异步时序逻辑的综合,而且也因为用异步时序逻辑确实很难来控制由组合逻辑和延迟所产生的冒险和竞争。当电路的复杂度增加时,异步时序逻辑无法调试。工艺的细微变化也会造成异步时序逻辑电路的失效。因为异步时序逻辑中触发条件很随意,任何时刻都有可能发生,所以记录状态的寄存器组的输出在任何时刻都有可能发生变化。而同步时序逻辑中的触发输入至少可以维持一个时钟后才会发生第二次触发。这是一个非常重要的差别,因为我们可以利用这一个时钟的时间在下一次触发信号来到前,为电路状态的改变创造一个稳定可靠的条件。

因此我们可以得出结论:同步时序逻辑比异步时序逻辑具有更可靠更简单的逻辑关系。如果我们强行作出规定,用 Verilog 来设计可综合的状态机必须使用同步时序逻辑,有了这个前提条件,实现自动生成电路结构的综合器就有了可能 。因为这样做大大减少了综合工具的复杂度,为这种工具的成熟创造了条件。也为 Verilog 可综合代码在各种工艺和 FPGA 之间移植创造了条件。

Verilog RTL 级的综合就是基于这个规定的。

下面我们将详细说明同步与异步时序逻辑的差异。

在同步逻辑电路中,触发信号是时钟(clock)的正跳沿(或负跳沿);触发器的输入与输出是经由两个时钟来完成的。第一个时钟的正跳沿(或负跳沿)为输入作准备,在第一个时钟正跳沿(或负跳沿)到来后到第二个时钟正跳沿(或负跳沿)到来之前的这一段时间内,有足够的时间使输入稳定。当第二个时钟正跳沿(或负跳沿)到来时刻,由前一个时钟沿创造的条件已经稳定,所以能够使下一个状态正确地输出。

若在同一时钟的正跳沿(或负跳沿)下对寄存器组既进行输入又进行输出,很有可能由于门的延迟使输入条件还未确定时,就输出了下一个状态,这种情况会导致逻辑的紊乱。而利用上一个时钟为下一个时钟创造触发条件的方式是安全可靠的。但这种工作方式需要有一个前提:确定下一个状态所使用的组合电路的延迟与时钟到各触发器的差值必须小于一个时钟周期的宽度。只有满足这一前提才可以避免逻辑紊乱。在实际电路的实现中,采取了许多有效的措施来确保这一条件的成立,其中主要有以下几点:

(1)全局时钟网络布线时尽量使各分支的时钟一致;

(2)采用平衡树结构,在每一级加入缓冲器,使到达每个触发器时钟端的时钟同步。(如图 1、2 所示)


通过这些措施基本可以保证时钟的同步,在后仿真时,若逻辑与预期设计的不一样,可降低时钟频率,就有可能消除由于时钟过快引起的触发器输入端由延迟和冒险竞争造成的不稳定从而使逻辑正确。

在组合逻辑电路中,多路信号的输入使各信号在同时变化时很容易产生竞争冒险,从而结果难以预料。下面就是一个简单的组合逻辑的例子:C = a & b;


a 和 b 变化不同步使 C 产生了一个脉冲。这个结果也许与当初设计时的想法并不一致,但如果我们能过一段时间,待 C 的值稳定后再来取用组合逻辑的运算结果,就可以避免竞争冒险。同步时序逻辑由于用上一个时钟的跳变沿时刻(置寄存器作为组合逻辑的输入)来为下一个时钟的跳变沿时刻的置数(置下一级寄存器作为该组合逻辑的输出)做准备,只要时钟周期足够长,就可以在下一个时钟的跳变沿时刻得到稳定的置数条件,从而在寄存器组中存入可靠的数据。

而这一点用异步电路是做不到的,因此在实际设计中应尽量避免使用异步时序逻辑。若用弥补的方法来避免竞争冒险,所耗费的人力物力是很巨大的。也无法使所设计的 Verilog HDL代码和已通过仿真测试的电路模块结构有知识产权的可能,因为工艺的细微改变就有可能使电路无法正常工作。显而易见使用异步时序逻辑会带来设计的隐患,无法设计出能严格按同一时间节拍操作控制数据流动方向开关的状态机。而这种能按时钟节拍精确控制数据流动开关的状态机就是同步有限状态机。它是算法计算过程中数据流动控制的核心。计算结构的合理配置和运算效率的提高与算法状态机的设计有着非常密切的关系。我们只有通过阅读有关计算机体系结构的资料和通过大量的设计实践才能熟练地掌握复杂算法系统的设计。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭