当前位置:首页 > 智能硬件 > 机器视觉
[导读] 深度学习是人工智能的热点发展方向之一,将推动我们步入控制设计和工业物联网的新台阶。机器视觉在工业控制领域极其重要,借助这些技术,使用数据驱动部署复杂的机器和设备。 为了比竞争对手更好地服

深度学习是人工智能的热点发展方向之一,将推动我们步入控制设计和工业物联网的新台阶。机器视觉在工业控制领域极其重要,借助这些技术,使用数据驱动部署复杂的机器和设备。

为了比竞争对手更好地服务其目标客户,当今的嵌入式设计团队正在寻求机器学习(ML)和深度学习(DL)等新技术,以便在有限的资源下按时向市场开发和部署复杂的机器和设备。借助这些技术,团队可以使用数据驱动的方法构建复杂的单系统或多系统模型。 ML和DL算法不是使用基于物理学的模型来描述系统的行为,而是透过数据推断出系统的模型。 传统ML算法适用于处理数据量相对较小且问题的复杂度较低的情况。 但如果是像自动驾驶汽车这样的大数据问题呢? 解决这个挑战需要采用DL技术。 本文介绍了这种新兴技术将如何推动我们进入控制设计和工业物联网(IIoT)应用的下一个时代。

1 ML技术在工业资产状态监测中的应用

首先考虑机器学习(ML)技术在工业资产状态监测中的应用。 ML有助于将基于状态的监测应用从被动维护和预防性维护转变为预测性维护。 这些技术常用于检测异常行为和诊断问题,并在一定程度上预测电机、水泵和涡轮机等工业资产的剩余使用寿命。

基于ML的模型开发和部署流程如图1所示。

图1 基于机器学习的分析流程

看看这个工作流程是如何用来监控电机的健康状况的。 数据是从加速度计、热电偶和连接到电机的电流传感器等多种类型的传感器采集而来。 特征工程步骤通常由两部分组成: 特征提取和特征约简。 特征提取用于从原始数据(或波形)中导出有助于了解资产健康情况的信息。 例如,来自电机的电流信号的频谱中嵌入了可用于检测故障的信息,如图2所示。频谱中不同频带上的平均振幅可用作为从电流信号中提取的特征。 从多个传感器提取的特征可能包含冗余信息。 可以使用主成分分析(PCA)等特征约简方法来减少最终用于建立模型的特征的数量。 特征的数量减少,意味着要使用的ML模型的复杂性降低了。 减少的特征集表示为向量(或数组),并输入到ML算法中,ML算法将用于模型创建步骤。 模型创建和验证是一个迭代过程,在这个过程中,您可以尝试使用几种ML算法,并选择最适合您应用的算法。

图2 对电机电流信号进行特征约简

图 3 特征工程

无监督的ML算法(如高斯混合模型(GMM))可用于模拟电机的正常行为,并检测电机何时开始偏离其基线。 无监督的方法不需要标记数据就可以发现数据中的隐藏模式。 无监督的技术主要用来检测电机的异常,监督算法则用于检测异常的原因。 在有监督的方法中,算法以输入数据和期望输出的组合表示。 这个数据称为标签数据。 算法会学习函数将输入映射到输出。 用于训练ML算法的数据包含在正常和错误条件下提取的特征。 使用表示电机状态的标签可清楚地标识特征。 常用的监督ML算法包括支持向量机(SVM)、逻辑回归和人工神经网络。

传统ML技术面临的挑战是特征提取过程。 这个过程需要专业的领域知识,而且非常容易出错,通常是ML工作流程中的故障点。 因此现在越来越多人采用DL算法,因为它们无需使用特征工程步骤。 从传感器采集的数据(原始测量数据)可以直接输入到DL算法中,如下所示。

图4 深度学习工作流程

DL算法基于人工神经网络。 人工神经网络学习算法受到生物神经网络的结构和功能的启发。 这些算法采用相互连接的计算节点(人工神经)组的形式结构,而计算节点采用层的结构形式。 第一层称为输入层,作为与输入信号或数据的连接接口。 最后一层是输出层,该层中的神经元输出最终的预测或决定。 在输入层和输出层之间,有一个或多个隐藏层(图5)。 每一层的输出通过加权连接的方式连接到下一层的节点。 神经网络通过修改这些权重来学习输入和输出之间的映射。 通过使用多个隐藏层,DL算法可以学习需要从输入数据中提取的特征,而不需要将特征明确地输入到学习算法中。 这就称为特征学习。

图5 前馈人工神经网络

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭