当前位置:首页 > 汽车电子 > 汽车电子技术文库
[导读] 近年来,RF领域毫米波频带的技术发布激增,在今年的发布中,除了电路技术本身的进步之外,支持新用途的方案以及只有毫米波才能实现的电路技术方案备受关注。在Session 23“mm-Wa

近年来,RF领域毫米波频带的技术发布激增,在今年的发布中,除了电路技术本身的进步之外,支持新用途的方案以及只有毫米波才能实现的电路技术方案备受关注。在Session 23“mm-Wave Transceivers,Power Amplifiers & Sources”上,索尼、美国加州理工学院(California InsTItute of Technology)共同发布了连接输入输出设备用56GHz收发电路,美国加州大学伯克利分校(UC Berkeley)、意大利帕多瓦大学(University of Padova)和意法半导体(STMicroelectronics)共同提出了用开关控制片上天线的90GHz频带发送电路,除了这些新系统的方案之外,德国乌泊塔尔大学(University of Wuppertal)还发布了160GHz频带收发电路和成像阵列用650GHz接收电路,会上共有9项发布。

在一开始索尼的技术发布(演讲序号23.1)中,报告了可用56GHz频带近距离无线通信实现用于连接高清电视等设备的11Gbit/秒数据传输速度。40nm工艺CMOS收发电路和基于引线键合(Wire Bonding)的天线,在6.4pJ/bit的电力条件下,实现了1.4cm距离范围内的通信。“相对于有线传输方式在数据转发速度提高时,因充放电容量较大,会受到低功耗的限制而言,无线传输方式更有利于降低功耗”,这一观点在会场引发了热烈的讨论,体现了对这一领域的关注度之高。

德国乌泊塔尔大学的发布(演讲序号23.2)报告了使用0.13μm工艺SiGe BiCMOS技术的160GHz频率正交型直接变频收发电路。振荡器可使其在相当于收发频率1/3的52GHz到55GHz之间振荡,提高3倍之后产生局域信号。

芬兰赫尔辛基理工大学(Helsinki University of Technology)发布的技术(演讲序号23.3),与采用65nm工艺CMOS技术的77-94GHz频带8GHz IF信号图象载频抑制(Image RejecTIon)型发送电路有关。输出功率为6.6dBm时,图像载频抑制量达到了15-20dB。

加州大学伯克利分校等发布了医疗用脉冲雷达发送电路(演讲序号23.4)。该电路采用了0.13μm工艺BiCMOS技术,对90GHz的载波进行脉冲调制时,除了可启功率放大器之外,片上天线也设置了开关,实现了35ps的脉冲。该技术方案充分利用了天线也可片上化的毫米波频带特点。

意大利摩德纳雷焦艾米利亚大学(University of Modena and Reggio Emilia)等发布了以115GHz的频率工作,调谐范围可宽达13.1%的注入锁定(InjecTIon Lock)型2倍频电路(演讲序号23.5)。通过采用Push-Push型电路,以及充分确保注入信号的方法,使调谐范围达到了原来的3~5倍。

此外,还有接连3项60GHz频带放大器技术发布。首先台湾联发科技(MediaTek)和美国IBM发布了采用65nm工艺CMOS技术,可在1V电源下输出17.9dBm功率的60GHz频带放大器(演讲序号23.6)。这种放大器采用前级两并联、中级及后级四并联的3级构成,合波器由转换器构成。

美国加州大学戴维斯分校(University of California Davis)发布了采用90nm工艺CMOS技术,可在1.2V电源下输出19.9dBm功率的60GHz频带放大器(演讲序号23.7)。这种放大器采用前级、2级两并联、3级及后级四并联的4级构成,分波器和合波器全部采用Wilkinson型电路。

意法半导体等发布了可在1.2及1.8V电源下输出18.1dBm功率的60GHz频带放大器(演讲序号23.8)。这种放大器由8个采用2级构成的单个放大器并联而成。2级构成的单个放大器为差分放大器,可由转换器进行信号差分转换,实现各级之间的统一。

最后,乌泊塔尔大学发布了与适用THz成像的650GHz接收电路有关的技术(演讲序号23.9)。这种电路采用了0.13μm工艺SiGe BiCMOS,可在双极晶体管中添加650GHz信号和频率约为其1/4的信号,从而产生100MHz频带IF信号。转换增益为-13dB,噪声指数为42dB。尽管电路的基本运行仍在确认,但该大学对650GHz频率的挑战值得一提。

从整体来看,各项技术的模拟数据和实测数据均非常一致,令人感到毫米波频带技术设计精度的不断提高。另外,受益于设计精度的提高,尤其是被动元件设计的不断进步,正如序号为23.6、23.7及23.8所描述的那样,与原来相比,对最大输出功率的提高作出了贡献。要实现毫米波系统,虽然需要集成电路设计的进步,但同样需要包含封装技术在内的相关技术不断进步。与去年相同,今年也发布了很多片上评测技术,期待今后能够发布更多包含封装技术在内的相关技术。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭