当前位置:首页 > 通信技术 > 通信网络
[导读] 流媒体视频、云服务和移动数据推动了全球网络流量的持续增长。为了支持这种增长,网络系统必须提供更快的线路速率和每秒处理数百万个数据包的性能。在网络系统中,数据包的到达顺序是随机的,且每个数据包的处

流媒体视频、云服务和移动数据推动了全球网络流量的持续增长。为了支持这种增长,网络系统必须提供更快的线路速率和每秒处理数百万个数据包的性能。在网络系统中,数据包的到达顺序是随机的,且每个数据包的处理需要好几个存储动作。数据包流量需要每秒钟访问数亿万次存储器,才能在转发表中找到路径或完成数据统计。

数据包速率与随机存储器访问速率成正比。如今的网络设备需要具有很高的随机访问速率(RTR)性能和高带宽才能跟上如今高速增长的网络流量。其中,RTR是衡量存储器可以执行的完全随机存储(读或写)的次数,即随机存储速率。该度量值与存取处理过程的处理位数无关。RTR是以百万次/每秒(MT/s)为单位计量的。

相比于高性能网络系统需要处理的随机流量的速率,当今高性能DRAM能够处理的要少一些。QDR-IV SRAM旨在提供同类最佳的RTR性能,以满足苛刻的网络功能要求。图1量化了QDR-IV相比于其它类型的存储器在RTR性能方面的优势。即使与最高性能的存储器相比,QDR-IV仍能提供两倍于后者的RTR性能,因此,它是那些需要执行要求苛刻的操作-如更新统计数据、跟踪数据流状态、调度数据包、进行表查询-的高性能网络系统的理想选择。

在本系列的第一部分中,我们将探讨两种类型的QDR-IV存储器、时钟、读/写操作和分组操作。


图1. QDR-IV性能对比

不同类型的QDR-IV:XP和HP

QDR-IV 有两种类型。HP在较低频率下工作,而且不使用分组操作。 XP面向最高性能的应用,可以使用分组操作方案,并在较高频率下工作。

QDR-IV的读写时延由运行速度决定。表1定义了工作模式和每个模式所支持的频率。

表1. 工作模式

QDR-IV SRAM具有两个端口,即端口A和端口B。由于可以独立访问这两个端口,所以对存储器阵列进行的任何读/写访问组合均可得到最大的随机数据传输速率。在QDR-IV中,对每个端口进行访问时需要使用双倍数据速率的通用地址总线(A)。端口A的地址在输入时钟(CK)的上升沿上被锁存,而端口B的地址在输入时钟(CK)的下降沿上或在CK#的上升沿上被锁存。控制信号(LDA#、LDB#、RWA#和RWB#)以单倍数据速率(SDR)工作,并用于确定执行读操作还是写操作。两个数据端口(DQA和DQB)均配备了双倍数据速率(DDR)接口。该器件具有2字突发的架构。器件的数据总线带宽为 &TImes; 18或 &TImes; 36。

QDR-IV SRAM包括指定为端口A和端口B的两个端口。因为对两个端口的访问是独立的,所以对于对存储器阵列的读/写访问的任何组合,随机事务速率被最大化。 对每个端口的访问是通过以双倍数据速率(即时钟的两个边沿)运行的公共地址总线(A)。 端口A的地址在输入时钟(CK)的上升沿锁存,端口B的地址在CK的下降沿或CK#的上升沿锁存。 控制信号(LDA#,LDB#,RWA#和RWB#)以单数据速率(SDR)运行,它们决定是执行读操作还是写操作。 两个数据端口(DQA和DQB)都配有双倍数据速率(DDR)接口。 该器件采用2字突发架构。 它提供&TImes;18和&TImes;36数据总线宽度。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭