当前位置:首页 > 智能硬件 > 人工智能AI
[导读] 模糊神经网络简介 模糊神经网络就是模糊理论同神经网络相结合的产物,它汇集了神经网络与模糊理论的优点,集学习、联想、识别、信息处理于一体。 系统的复杂性与所要求的精确性之间存在尖锐

模糊神经网络简介

模糊神经网络就是模糊理论同神经网络相结合的产物,它汇集了神经网络与模糊理论的优点,集学习、联想、识别、信息处理于一体。

系统的复杂性与所要求的精确性之间存在尖锐矛盾,为此,通过模拟人类学习和自适应能力,人们提出了智能控制的思想。控制理论专家Austrom(1991)在IFAC 大会上指出:模糊逻辑控制、神经网络与专家控制是三种典型的智能控制方法。通常专家系统建立在专家经验上,并非建立在工业过程所产生的操作数据上,且一般复杂系统所具有的不精确性、不确定性就算领域专家也很难把握,这使建立专家系统非常困难。而模糊逻辑和神经网络作为两种典型的智能控制方法,各有优缺,模糊逻辑与神经网络的融合———模糊神经网络(Fuzzy Neural Network)由于吸取了模糊逻辑和神经网络的优点, 部分避免了两者的缺点, 已经成为当今智能控制研究的热点之一

模糊逻辑(FL)、神经网络理论(NN)、遗传算法(GA)、随机推理(PR), 以及置信网络、混沌理论和部分学习理论相融合,形成了一种协作体,这种融合并非杂乱无章地将模糊逻辑、神经网络和遗传算法等进行拼凑,而是通过各种方法解决本领域的问题并相互取长补短,从而形成了各种方法的协作。从这个意义上讲,各种方法是互补的, 而不是竞争的。在协作体中, 各种方法起着不同的作用。通过这种协作,产生了混合智能系统。模糊逻辑和神经网络都是重要的智能控制方法,将模糊逻辑和神经网络这两种软计算方法相结合, 取长补短, 形成一种协作体———模糊神经网络。

RTT作为网络拥塞控制的重要参数,能对网络所发生的拥塞作出较早的反映。文献[1]根据求得的RTT估计值,提出一种RTT驱动的拥塞控制算法,此算法在实时性和网络状态的震荡抑制等方面,比基于丢包率的拥塞控制算法有明显改善。

选取公式(1)来估计RTT的值:

RTTn+1=RTTn+gE (E=RTTm-RTTn) (1)

其中RTTm为当前所测得的RTT值;RTTn为上一探测包的平均RTT估值,g∈(0,1]。不同网络或同一网络的不同时段对g的选取有很大影响。文献[2]针对可靠组播传输,提出了一种基于主动式网络的往返行程时间估算策略,可靠组播协议借助这一策略可以有效地减少网络中不必要的控制信息,根据网络环境可以及时准确地确定进入网络的数据包速率,从而提高整个组播组的吞吐量。RTT预测研究目前是一个热点问题,对RTT进行精确预测很有意义。文献[3]采用基于波形平滑指数和波形突变指数的滑动窗口加权平均RTT估计算法,对RTT值进行平滑估计。利用神经网络对RTT进行了预测,达到了较好的效果。但这仅限于网络比较空闲的状态下。利用算术平均滤波和BP网络相结合的办法,对RTT进行预测,在网络较拥塞的情况下,预测结果不太理想。这是由于RTT误差值随着网络负荷加重时也会增加,因为队列延时和延时的抖动都会随着网络拥塞程度加重而明显增加。另外,在网络拥塞时会导致数据包或ACK包丢失,这些都会导致估计RTT的难度增加并且估计出的RTT值也不准确,出现一些波动,导致网络有时出现训练失控状态。所以本文采用了低通滤波和MBP网络相结合的预测策略。本文主要分析了RTT的特性,发现其有很强的高频噪声,采用低通滤波和MBP网络相结合的RTT预测策略。实验表明,即使在网络状况较忙的情况下,也能获得很好的预测结果。

网络往返延时特性

网络环境和网络设备的性能对数据吞吐量影响很大,致使网络上的数据具有较强的随机性,常常表现为短期的高频噪声。由于网络中两个节点之间的通信数据流可以有很多的路径到达,如果每个数据包所流经的路径不同, RTT就可能不同;另一方面,即使每个数据包是经由相同的路径到达目的节点,但是由于这个路径中的网络设备是网络共享的,在不同的数据包通过时网络设备所承担的数据传送任务也不会相同,这就导致RTT也可能不相同,相关研究结果的准确性会受到这种短期噪声导致的随机性影响。

网络状况和网络设备性能在较长期内的参数是相对稳定的。由于网络数据是在随机和稳定这两种因素的共同制约下产生的,所以滤波对于研究网络数据是必不可少的,因为此时我们主要关注的是网络节点的群体行为给予网络数据的规律性。

RTT数据预处理

低通滑动滤波算法的思想为:取a为(0,1)之间的数据,则:

本次滤波结果=(1-a)&TImes;本次采样值+a&TImes;上次滤波结果。它的优点在于对周期性的干扰具有很好的抑制作用,适用于波动频率较高的场合。选取a=0.05。

RTT的测试实验是在校园网上进行的。源节点和反馈节点分别位于天津职业技术师范大学和天津工业大学。在实验中,每隔100ms就发送200个10bytes大小的TCP数据包,然后记录发送时间和接收返回结果的时间,并计算它们的差值,差值就是RTT。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭