当前位置:首页 > 智能硬件 > 人工智能AI
[导读]   3DES,也称为3DESede或TripleDES,是三重数据加密,且可以逆推的一种算法方案。1975年美国IBM公司成功研究并发布了DES加密算法,但DES密码长度容易被暴力破解,通过对D

  3DES,也称为3DESede或TripleDES,是三重数据加密,且可以逆推的一种算法方案。1975年美国IBM公司成功研究并发布了DES加密算法,但DES密码长度容易被暴力破解,通过对DES算法进行改进,针对每个数据块进行三次DES加密,也就是3DES加密算法。但由于3DES的算法是公开的,所以算法本身没什么秘密可言,主要依靠唯一密钥来确保数据加密解密的安全。

  有人可能会问,那3DES到底安不安全呢?!目前为止,还没有人能破解3DES,所以你要是能破解它,都足以震惊整个信息安全界了。

 3DES加密算法简析

  3DES加密算法并非什么新的加密算法,而是DES算法的另一种模式。是现在比较常用的一种对称加密算法,比起DES来说安全性更高。该算法的加解密过程分别是对明文/密文数据进行三次DES加密或解密,得到相应的密文或明文。假设EK()和DK()分别表示DES的加密和解密函数,P表示明文,C表示密文,那么加解密的公式如下:

  加密:C = EK3( DK2( EK1(P) ) ) 即对明文数据进行,加密 --》 解密 --》 加密的过程,最后得到密文数据

  解密:P = DK1( EK2( DK3(C) ) ) 即对密文数据进行,解密 --》 加密 --》 解密的过程,最后得到明文数据

  其中:K1表示3DES中第一个8字节密钥,K2表示第二个8字节密钥,K3表示第三个8字节密钥,通常情况下,3DES的密钥为双倍长密钥(若不知道双倍长,可参考博主的密钥分算算法文章中的解释),即K1对应KL(左8字节),K2对应KR(右8字节),K3对应KL(左8字节)。

  由于DES加解密算法是每8个字节作为一个加解密数据块,因此在实现该算法时,需要对数据进行分块和补位(即最后不足8字节时,要补足8字节)。Java本身提供的API中NoPadding,Zeros填充和PKCS5Padding。假设我们要对9个字节长度的数据进行加密,则其对应的填充说明如下:

  ZerosPadding

  无数据的字节全部被填充为0

  第一块:F0 F1 F2 F3 F4 F5 F6 F7

  第二块:F8 0 0 0 0 0 0 0

  PKCS5Padding

  每个被填充的字节都记录了被填充的长度

  第一块:F0 F1 F2 F3 F4 F5 F6 F7

  第二块:F8 07 07 07 07 07 07 07

  DES的具体算法过程很复杂,实话说我也不懂,我只能借用Android和iOS里面自带的API去实现3DES的过程,其具体代码如下:

  Android代码

  [plain] view plain copypublic byte[] triDesEncrypt(byte[] desKey, byte[] desData, int flag) {//flag == 1为加密,flag == 0为解密

  byte[] keyFirst8 = new byte[8];

  byte[] keySecond8 = new byte[8];

  if (desKey.length 》 8) {

  for (int i = 0; i 《 8; i++) {

  keyFirst8[i] = desKey[i];

  }

  } else {

  return null;

  }

  if (desKey.length 《 16) {

  for (int i = 0; i 《 desKey.length - 8; i++) {

  keySecond8[i] = desKey[i + 8];

  }

  } else {

  for (int i = 0; i 《 8; i++) {

  keySecond8[i] = desKey[i + 8];

  }

  }

  byte[] tmpKey = new byte[8];

  byte[] tmpData = new byte[8];

  arrayCopy(keyFirst8, 0, tmpKey, 0, 8);

  arrayCopy(desData, 0, tmpData, 0, 8);

  int mode = flag;

  byte[] result = unitDes(tmpKey, tmpData, mode);

  arrayCopy(keySecond8, 0, tmpKey, 0, 8);

  arrayCopy(result, 0, tmpData, 0, 8);

  mode = (mode == 1) ? 0 : 1;

  result = unitDes(tmpKey, tmpData, mode);

  arrayCopy(keyFirst8, 0, tmpKey, 0, 8);

  arrayCopy(result, 0, tmpData, 0, 8);

  mode = (mode == 1) ? 0 : 1;

  result = unitDes(tmpKey, tmpData, mode);

  return result;

  }

  iOS代码

  [plain] view plain copy+ (NSData *)encryptWithDataKey:(NSData *)src key1:(NSData *)key1 key2:(NSData *)key2 key3:(NSData *)key3

  {

  if (src == nil || [src length] == 0 ||

  key1 == nil || [key1 length] == 0 ||

  key2 == nil || [key2 length] == 0 ||

  key3 == nil || [key3 length] == 0) {

  return nil;

  }

  const void *vplainText;

  size_t plainTextBufferSize;

  plainTextBufferSize = [src length];

  vplainText = [src bytes];

  CCCryptorStatus ccStatus;

  uint8_t *bufferPtr = NULL;

  size_t bufferPtrSize = 0;

  size_t movedBytes = 0;

  bufferPtrSize = (plainTextBufferSize + kCCBlockSize3DES) & ~(kCCBlockSize3DES - 1);

  bufferPtr = malloc(bufferPtrSize * sizeof(uint8_t));

  memset((void *)bufferPtr, 0x00, bufferPtrSize);

  NSMutableData *key = [NSMutableData data];

  [key appendData:key1];

  [key appendData:key2];

  [key appendData:key3];

  NSString *initVec = @“01234567”;

  const void *vKey = [key bytes];

  const void *vinitVec = (const void *)[initVec UTF8String];

  uint8_t iv[kCCBlockSize3DES];

  memset((void *)iv, 0x00, (size_t)sizeof(iv));

  ccStatus = CCCrypt(kCCEncrypt, kCCAlgorithm3DES, kCCOpTIonPKCS7Padding | kCCOpTIonECBMode, vKey, kCCKeySize3DES, vinitVec, vplainText, plainTextBufferSize, (void *)bufferPtr, bufferPtrSize, &movedBytes);

  if (ccStatus != kCCSuccess) {

  free(bufferPtr);

  return nil;

  }

  NSData *result = [NSData dataWithBytes:bufferPtr length:movedBytes];

  free(bufferPtr);

  return result;

  }

  + (NSData *)decryptWithDataKey:(NSData *)src key1:(NSData *)key1 key2:(NSData *)key2 key3:(NSData *)key3

  {

  if (src == nil || [src length] == 0 ||

  key1 == nil || [key1 length] == 0 ||

  key2 == nil || [key2 length] == 0 ||

  key3 == nil || [key3 length] == 0) {

  return nil;

  }

  const void *vplainText;

  size_t plainTextBufferSize;

  plainTextBufferSize = [src length];

  vplainText = [src bytes];

  CCCryptorStatus ccStatus;

  uint8_t *bufferPtr = NULL;

  size_t bufferPtrSize = 0;

  size_t movedBytes = 0;

  bufferPtrSize = (plainTextBufferSize + kCCBlockSize3DES) & ~(kCCBlockSize3DES - 1);

  bufferPtr = malloc(bufferPtrSize * sizeof(uint8_t));

  memset((void *)bufferPtr, 0x00, bufferPtrSize);

  NSMutableData *key = [NSMutableData data];

  [key appendData:key1];

  [key appendData:key2];

  [key appendData:key3];

  NSString *initVec = @“01234567”;

  const void *vkey = [key bytes];

  const void *vinitVec = (const void *)[initVec UTF8String];

  uint8_t iv[kCCBlockSize3DES];

  memset((void *)iv, 0x00, (size_t)sizeof(iv));

  ccStatus = CCCrypt(kCCDecrypt, kCCAlgorithm3DES, kCCOpTIonPKCS7Padding | kCCOpTIonECBMode, vkey, kCCKeySize3DES, vinitVec, vplainText, plainTextBufferSize, (void *)bufferPtr, bufferPtrSize, &movedBytes);

  if (ccStatus != kCCSuccess) {

  free(bufferPtr);

  return nil;

  }

  NSData *result = [NSData dataWithBytes:bufferPtr length:movedBytes];

  free(bufferPtr);

  return result;

  }  

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭