当前位置:首页 > 汽车电子 > 汽车安全系统设计
[导读] 汽车轮胎压力监视系统(TPMS)可以在汽车行驶时实时地对轮胎气压进行自动监测,对轮胎漏气、低气压、高气压进行预警,以保障驾乘者行车安全[1]。 TPMS发射天线工作于频率433.92 MHz,信

汽车轮胎压力监视系统(TPMS)可以在汽车行驶时实时地对轮胎气压进行自动监测,对轮胎漏气、低气压、高气压进行预警,以保障驾乘者行车安全[1]。 TPMS发射天线工作于频率433.92 MHz,信号收发距离小于10 m,安装在轮胎内部的胎压检测模块上。为了保证汽车行驶时数据传输准确可靠,要求天线具有全向性。同时由于安装空间有限,并且整个模块只由一块锂电池供电,要求天线体积小、发射效率高。随着TPMS的快速发展,在保证基本性能的基础上,小型化天线的研究显得越来越重要。

目前比较常用的 TPMS天线类型有倒F螺旋天线[2-3]和小环天线[4],倒F螺旋天线性能较好,但占用空间大,而小环天线体积虽小,但发射效率低。本文结合实际需求,设计并制作了一种小型的PCB螺旋天线,被加工在一块面积只有20 mm&TImes;16.7 mm的聚四氟乙烯板上。PCB螺旋天线与传统螺旋天线相比,在总长度相同的情况下,天线尺寸大幅度减小。此外金属导线固定在PCB板上,长度、宽度和距离等参数大小容易控制,因此这种天线具有小尺寸、易制作的特点。实验结果表明该天线可工作于频率433.92 MHz,具有良好的全向性,满足TPMS发射天线的性能要求。

1 天线的结构

PCB螺旋天线的结构如图1所示,该天线由11圈螺旋构成。在长方形介质基板的两面分别印刷金属导线,宽度一致,两端有导通孔,其内壁覆铜,用来连接两层的金属。馈电线与图1(b)中右上角最大的导通孔相连接,其余的导通孔直径大小相同。从PCB板制作工艺上考虑,为了确保金属的连接,设计时每个导通孔周围要加上焊盘。

2 天线的设计与仿真

天线的工作频率取决于天线本身的尺寸。从天线的结构可以看出,这种螺旋天线的缠绕非常密集。根据螺旋天线的特性,密集的缠绕会产生寄生感抗,导致螺旋天线的谐振频率增加[5],因此在设计时总长度应该比理论长度稍短。

本文使用软件CST MICROWAVE STUDIO进行仿真。采用介电常数为2.5、厚度为1.6 mm的介质基板。为了满足小型化的要求,在设计时需要选用最小的PCB工艺尺寸。因此,根据天线制作的实际情况,在仿真时,部分参数是固定的,只能通过调节参数L和S来达到所需要的频率。

通过对天线的建模仿真,得出了天线谐振特性与金属导线长度L和螺距S之间的关系,如表1所示,其中F为中心频率。从表1中可以看出:S不变时,随着L的增大,谐振频率减小;L不变时,随着S的增大,谐振频率增大。

经过优化后,天线参数设计如表2所示。

由于天线阻值较小,约为3.58 Ω左右,因此需要外接匹配电路与50 Ω输入阻抗相匹配。本文中采用T型匹配电路,在软件ADS中进行仿真,得到S11曲线如图3所示。从图中可以看出天线的有效工作频段为 432.6~435.2 MHz(S11<-10 dB)。虽然带宽较窄,但在工作频率433.92 MHz 处的S11约为-40 dB,满足信号发射的条件。

3 天线的制作与测试

根据实际工程经验,PCB板介质的损耗对天线的增益有很大的影响。当介质损耗角正切不变时天线增益则随介电常数ε的增大而减小[6]。因此选择稳定性好、损耗很低的聚四氟乙烯介质板来制作天线。天线的尺寸为20 mm&TImes;16.7 mm&TImes;10 mm。

实测得到的S11曲线如图4所示,与仿真得到的结果基本吻合,验证了设计的可行性。但由于匹配电路设计时使用的是自制电感,另外加工精度不高,导致实测得到的S11值小于仿真值。天线的有效带宽为432.2~435.3 MHz(S11<-10 dB),频率433.92 MHz处的S11<-15 dB,可用作TPMS中胎压检测模块中的信号发射天线。在实际应用时,匹配电路可使用体积小、高品质的贴片电容和电感。

TPMS 发射天线工作于433.92 MHz,频率较低,和其他元件连接后一起安装在轮胎内部,占用的空间极小,这给天线的设计带来了很大的困难。针对这一难点,本文设计制作了一种PCB螺旋天线,并进行了测试实验研究,结果表明这种天线具有良好的全向性,体积小重量轻,满足TPMS对天线小型化的需求。同时这种结构的天线还有着制作工艺简单、成本低、易与器件和电路集成等优点。但是由于带宽的限制,只能用作固定频率的发射天线。TPMS中的接收天线需要另行设计。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭