当前位置:首页 > 智能硬件 > 智能电网
[导读] 背景技术 目前微电网的控制方式主要有对等控制和主从控制2种。对等控制方式技术对分布式电源的协调控制要求高,目前还停留在实验室阶段;而主从控制方式对通信要求高,既要保证其可靠性还要有足够的

背景技术

目前微电网的控制方式主要有对等控制和主从控制2种。对等控制方式技术对分布式电源的协调控制要求高,目前还停留在实验室阶段;而主从控制方式对通信要求高,既要保证其可靠性还要有足够的实时性,对计算机系统及通信依赖较大,时效性有待论证。主从控制方式又分为两层控制方式和三层控制方式,国内外试点工程大多使用这2种控制方式,侧重于协调微电网内部分布式电源和负荷的运行。分布式电源位置灵活与分散的特点极好地适应了分散的电力需求与资源分布要求。但是大量分散的、形式多样、性能各异的分布式电源简单并网运行会对电网和用户造成冲击,给电能质量、系统保护、系统运行等带来不利的影响。将分布式电源、负荷、储能和控制装置构成微电网,对于电网表现为一个单一可控的单元,可以对中心控制信号进行响应,能很好地协调电网和分布式电源的矛盾。但是国内还没有出台统一的微电网通信标准,给微电网接入配电网运行控制增加了实施困难。

发明内容

本发明就是针对上述问题,提供一种效率高、配合度高且方便运动控制的微电网高效控制系统。

为实现上述目的,本发明采用如下技术方案,本发明包括微电网运行控制器、分布式发电远方主站、配电网管理系统、主控器、交换机、微电网保护装置、驱动电路、储能器、计量表、无线收发节点、风力机、电能质量检测器,其特征在于:微电网运行控制器连接分布式发电远方主站,分布式发电远方主站连接陪电网管理系统,配电网管理系统的输出端连接主控器,主控器通过交换机连接微电网保护装置,微电网保护装置连接驱动电路;主控器的输出端连接储能器、计量表、无线收发节点、风力机和电能质量检测器。

作为一种优选方案,所述的主控器为 AT89S51 单片机

作为另一种优选方案,风力机与主控器之间连接有驱动电路。

与现有技术相比本发明的有益效果是。

本发明采用自适应控制策略控制微电网运行,实现微电网运行模式快速切换。该控制系统可以应用在接入配电网的微电网系统,解决可再生能源渗透率不高的问题;也可以应用于离网运行的微电网系统,解决重要负荷后备电源和偏远农村供电难的问题。

附图说明

图 1 是本发明的电路原理框图。

具体实施方式

如图所示,本发明包括微电网运行控制器、分布式发电远方主站、配电网管理系统、主控器、交换机、微电网保护装置、驱动电路、储能器、计量表、无线收发节点、风力机、电能质量检测器,其特征在于:微电网运行控制器连接分布式发电远方主站,分布式发电远方主站连接陪电网管理系统,配电网管理系统的输出端连接主控器,主控器通过交换机连接微电网保护装置,微电网保护装置连接驱动电路;主控器的输出端连接储能器、计量表、无线收发节点、风力机和电能质量检测器。

作为一种优选方案,所述的主控器为 AT89S51 单片机。

作为另一种优选方案,风力机与主控器之间连接有驱动电路。

该系统包含接入控制层、协调控制层和设备层,按照 IEC61850 标准统一建模,分别对应着 IEC61850 中的站控层、间隔层和过程层。各种分布式电源本体设备与微电网控制器通信采用符合 IEC61850 框架体系的统一通信协议。设备层包含光伏发电控制器、风力机控制器、储能电池双向控制器及相关测控终端、在线监测装置等设备。通常,对提供微电网参考电压的储能、柴油发电机等设备进行控制的控制器定义为主控制器。部分厂家设备已完全支持 IEC61850,对于不支持 IEC61850 的智能电子设备以及常规的发电设备,可以通过合并单元接入到协调控制层,因此设备层可以按照 IEC61850 建模。设备层数据集中器或合并单元向协调控制层发送一次包含线路电压、电流等 IEC61850 报文。通过单向多路点对点串行通信链路采样值,采用专用数据集,使得帧格式固定。协调控制层设备主要是指微电网运行控制器,主要负责发送相应的控制命令给设备层具体实施控制,同时向主站层上送微电网执行信息。考虑间隔层面的互操性更容易得到保证,该控制系统设备的互操作性和互换性在间隔层面获得。微电网运行控制器根据 IEC61850 标准向智能开关发送GOOSE报文,GOOSE报文只有在开关量发生变位时发送或者在开关量没有变位时不定时发送。

功能模块 , 微电网运行控制模块内部关系主要包括数据管理模块、策略控制模块、通信管理模块。数据管理模块负责收集、存储和管理各部分状态数据和历史信息数据;策略控制模块根据当前微电网及主网的工况得到各执行设备具体控制量;通信管理模块包括接入控制管理和设备控制管理子模块。接入控制管理子模块负责接入控制主站和协调控制层的信息交互,完成对微电网子系统的协调控制;设备控制管理子模块下发控制量给分布式电源执行机构,同时收集设备层状态信息。以分布式电源发电计划执行为例,主站接入控制系统根据前一日负荷预测和电网运行状况下发次日微电网出力计划,微电网控制器结合分布式电源发电预测和主站发电计划,根据各微源发电特性将出力任务分解给各微源,并实时协调各微源的运行,执行后向主站接入控制系统反馈执行结果,实时修正当日发电计划。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭