当前位置:首页 > 通信技术 > 通信设计应用
[导读]   W5300在内存空间和数据处理能力等方面都有很大的提高。W5300特别适用于IPTV,IP机顶盒和数字电视等大流量多媒体数据的传输。通过一个集成有TCP/IP协议和10/100M的以太网MA

  W5300在内存空间和数据处理能力等方面都有很大的提高。W5300特别适用于IPTV,IP机顶盒和数字电视等大流量多媒体数据的传输。通过一个集成有TCP/IP协议和10/100M的以太网MAC和PHY的单芯片可以非常简单和快捷地实现Internet连接。

  W5300与主机(MCU)采用总线接口。通过直接访问方式或间接访问方式,W5300可以很容易与主机接口,就像访问SRAM存储器。W5300的通信数据可以通过每个端口的TX/RX FIFO寄存器访问。由于这些特性,即使一个初学者也很容易使用W5300实现Internet连接。

  特性

  支持软、硬件混合TCP/IP协议: TCP, UDP, ICMP, IGMP, IPv4, ARP, PPPoE, Ethernet;

  支持8个独立的端口(sockets)同时连接;。

  网络数据传输,速率可达到80Mbps;

  支持ADSL连接 (支持PPPOE协议,带PAP/CHAP验证);

  内部128K字节存储器作TX/RX缓存;

  根据端口通信数据吞吐量动态调整内部TX/RX存储器分配;

  内嵌10BaseT/100BaseTX以太网物理层,支持自动应答(全双工/半双工模式);

  可选TX1:1 RX1:1 网络变压器接口YL18-2050S,YT37-1107S及YL2J011D,YL2J201A

  支持自动极性变换(MDI/MDIX);

  支持8/16位数据总线;l 0.18μm CMOS工艺;

  3.3V工作电压,I/O口可承受5V电压,内部带1.8V电压调整器;

  LQFP-100,14x14mm无铅封装。

  单片机控制W5300源代码如下:

  /**

  ******************************************************************************

  * @file W5100.c

  * 本文件包括5个部分:

  * 1. W5100初始化

  * 2. W5100的Socket初始化

  * 3. Socket连接

  * 如果Socket设置为TCP服务器模式,则调用Socket_Listen()函数,W5100处于侦听状态,直到远程客户端与它连接。

  * 如果Socket设置为TCP客户端模式,则调用Socket_Connect()函数,

  * 每调用一次Socket_Connect(s)函数,产生一次连接,

  * 如果连接不成功,则产生超时中断,然后可以再调用该函数进行连接。

  * 如果Socket设置为UDP模式,则调用Socket_UDP函数

  * 4. Socket数据接收和发送

  * 5. W5100中断处理

  *

  * 置W5100为服务器模式的调用过程:W5100_Init()--》Socket_Init(s)--》Socket_Listen(s),设置过程即完成,等待客户端的连接。

  * 置W5100为客户端模式的调用过程:W5100_Init()--》Socket_Init(s)--》Socket_Connect(s),设置过程即完成,并与远程服务器连接。

  * 置W5100为UDP模式的调用过程:W5100_Init()--》Socket_Init(s)--》Socket_UDP(s),设置过程即完成,可以与远程主机UDP通信。

  *

  * W5100产生的连接成功、终止连接、接收数据、发送数据、超时等事件,都可以从中断状态中获得。

  ******************************************************************************

  */

  #include“W5100.h” /* 定义W5100的寄存器地址、状态 */

  #include“REG51.h”

  typedef unsigned char SOCKET;

  sbit SPI_CS= P1^0;

  sbit SPI_SCK= P1^1;

  sbit SPI_SO= P1^2;

  sbit SPI_SI= P1^3;

  sbit SPI_EN= P1^4;

  sbit KEY= P1^5;

  /* 端口数据缓冲区 */

  unsigned char Rx_Buffer[20]; /* 端口接收数据缓冲区 */

  unsigned char Tx_Buffer[20]; /* 端口发送数据缓冲区 */

  /* 网络参数寄存器 */

  unsigned char Gateway_IP[4]={192,168,2,254}; /* Gateway IP Address */

  unsigned char Sub_Mask[4]={255,255,255,0}; /* Subnet Mask */

  unsigned char Phy_Addr[6]={0x00,0x08,0xDC,0x01,0x02,0x03}; /* Physical Address */

  unsigned char IP_Addr[4]={192,168,2,1}; /* Loacal IP Address */

  unsigned char S0_Port[2]={0x13,0x88}; /* Socket0 Port number 5000 */

  unsigned char S0_DIP[4]={192,168,2,43}; /* Socket0 DesTInaTIon IP Address */

  unsigned char S0_DPort[2]={0x13,0x88}; /* Socket0 DesTInaTIon Port number 5000*/

  unsigned char S0_State=0; /* Socket0 state recorder */

  unsigned char S0_Data; /* Socket0 receive data and transmit OK */

  unsigned char W5100_Interrupt;

  /* UDP Destionation IP address and Port number */

  unsigned char UDP_DIPR[4];

  unsigned char UDP_DPORT[2];

  void Delay(unsigned int x)

  {

  unsigned int i;

  for(i=0;i《x;i++){

  SPI_EN=1;

  }

  }

  unsigned char SPI_ReadByte(void){

  unsigned char i,rByte=0;

  for(i=0;i《8;i++){

  rByte《《=1;

  rByte|=SPI_SO;

  SPI_SCK=0;

  Delay(10);

  SPI_SCK=1;

  SPI_SCK=0;

  }

  return rByte;

  }

  void SPI_SendByte(unsigned char dt)

  {

  unsigned char i;

  for(i=0;i《8;i++)

  {

  if((dt《《i)&0x80)

  {

  SPI_SI=1;

  }

  else

  {

  SPI_SI=0;

  }

  SPI_SCK=0;

  Delay(10);

  SPI_SCK=1;

  SPI_SCK=0;

  }

  }

  unsigned char Read_W5100(unsigned short addr)

  {

  unsigned char i;

  /* 置W5100的CS为低电平 */

  SPI_CS=0;

  /* 发送读命令 */

  SPI_SendByte(0x0f);

  /* 发送地址 */

  SPI_SendByte(addr/256);

  SPI_SendByte(addr);

  /* 读取数据 */

  i=SPI_ReadByte();

  /* 置W5100的CS为高电平 */

  SPI_CS=1;

  return i;

  }

  void Write_W5100(unsigned short addr, unsigned char dat)

  {

  /* 置W5100的CS为低电平 */

  SPI_CS=0;

  Delay(100);

  /* 发送写命令 */

  SPI_SendByte(0xf0);

  /* 发送地址 */

  SPI_SendByte(addr/256);

  SPI_SendByte(addr);

  /* 写入数据 */

  SPI_SendByte(dat);

  Delay(100);

  /* 置W5100的CS为高电平 */

  SPI_CS=1;

  }

  void W5100_Init(void)

  {

  unsigned char i;

  SPI_EN=1;SPI_SCK=0;SPI_CS=1;SPI_SO=1;

  Write_W5100(W5100_MODE,MODE_RST); /*软复位W5100*/

  Delay(100);

  ///Write_W5100(W5100_MODE,0); /*软复位W5100*/

  Delay(100); /*延时100ms,自己定义该函数*/

  /*设置网关(Gateway)的IP地址,4字节 */

  /*使用网关可以使通信突破子网的局限,通过网关可以访问到其它子网或进入Internet*/

  for(i=0;i《4;i++)

  Write_W5100(W5100_GAR+i,Gateway_IP); /*Gateway_IP为4字节unsigned char数组,自己定义*/

  for(i=0;i《4;i++)

  Gateway_IP=Read_W5100(W5100_GAR+i);

  /*设置子网掩码(MASK)值,4字节。子网掩码用于子网运算*/

  for(i=0;i《4;i++)

  Write_W5100(W5100_SUBR+i,Sub_Mask); /*SUB_MASK为4字节unsigned char数组,自己定义*/

  /*设置物理地址,6字节,用于唯一标识网络设备的物理地址值

  该地址值需要到IEEE申请,按照OUI的规定,前3个字节为厂商代码,后三个字节为产品序号

  如果自己定义物理地址,注意第一个字节必须为偶数*/

  for(i=0;i《6;i++)

  Write_W5100(W5100_SHAR+i,Phy_Addr); /*PHY_ADDR6字节unsigned char数组,自己定义*/

  /*设置本机的IP地址,4个字节

  注意,网关IP必须与本机IP属于同一个子网,否则本机将无法找到网关*/

  for(i=0;i《4;i++)

  Write_W5100(W5100_SIPR+i,IP_Addr); /*IP_ADDR为4字节unsigned char数组,自己定义*/

  /*设置发送缓冲区和接收缓冲区的大小,参考W5100数据手册*/

  Write_W5100(W5100_RMSR,0x55); /*Socket Rx memory size=2k*/

  Write_W5100(W5100_TMSR,0x55); /*Socket Tx mempry size=2k*/

  /* 设置重试时间,默认为2000(200ms) */

  Write_W5100(W5100_RTR,0x07);

  Write_W5100(W5100_RTR+1,0xd0);

  /* 设置重试次数,默认为8次 */

  Write_W5100(W5100_RCR,8);

  /* 启动中断,参考W5100数据手册确定自己需要的中断类型

  IMR_CONFLICT是IP地址冲突异常中断

  IMR_UNREACH是UDP通信时,地址无法到达的异常中断

  其它是Socket事件中断,根据需要添加 */

  Write_W5100(W5100_IMR,(IMR_CONFLICT|IMR_UNREACH|IMR_S0_INT));

  }

  unsigned char Detect_Gateway(void)

  {

  unsigned char i;

  Write_W5100((W5100_S0_MR),S_MR_TCP); /*设置socket0为TCP模式*/

  Write_W5100((W5100_S0_CR),S_CR_OPEN); /*打开socket0*/

  if(Read_W5100(W5100_S0_SSR)!=S_SSR_INIT)

  {

  Write_W5100((W5100_S0_CR),S_CR_CLOSE); /*打开不成功,关闭Socket,然后返回*/

  return FALSE;

  }

  /*检查网关及获取网关的物理地址*/

  for(i=0;i《4;i++)

  Write_W5100((W5100_S0_DIPR+i),IP_Addr+1); /*向目的地址寄存器写入与本机IP不同的IP值*/

  Write_W5100((W5100_S0_CR),S_CR_CONNECT); /*打开socket0的TCP连接*/

  Delay(20); /* 延时20ms */

  i=Read_W5100(W5100_S0_DHAR); /*读取目的主机的物理地址,该地址就是网关地址*/

  Write_W5100((W5100_S0_CR),S_CR_CLOSE); /*关闭socket0*/

  if(i==0xff)

  {

  /**********没有找到网关服务器,或没有与网关服务器成功连接***********/

  /********** 自己添加处理代码 ***********/

  return FALSE;

  }

  return TRUE;

  }

  void Socket_Init(SOCKET s)

  {

  unsigned int i;

  /*设置分片长度,参考W5100数据手册,该值可以不修改*/

  Write_W5100((W5100_S0_MSS+s*0x100),0x00); /*最大分片字节数=16*/

  Write_W5100((W5100_S0_MSS+s*0x100+1),0x10);

  /* Set Socket Port number */

  switch(s)

  {

  case 0:

  Write_W5100(W5100_S0_PORT,S0_Port[0]); /* Set Local Socket Port number */

  Write_W5100(W5100_S0_PORT+1,S0_Port[1]);

  Write_W5100(W5100_S0_DPORT,S0_DPort[0]); /* Set Destination port number */

  Write_W5100(W5100_S0_DPORT+1,S0_DPort[1]);

  for(i=0;i《4;i++)

  Write_W5100(W5100_S0_DIPR+i,S0_DIP); /* Set Destination IP Address */

  break;

  case 1:

  break;

  case 2:

  break;

  case 3:

  break;

  default:

  break;

  }

  }

  /**

  * @brief 设置Socket为客户端与远程服务器连接

  *当本机Socket工作在客户端模式时,引用该程序,与远程服务器建立连接

  *

  *如果启动连接后出现超时中断,则与服务器连接失败,需要重新调用该程序连接

  *该程序每调用一次,就与服务器产生一次连接

  **/

  unsigned char Socket_Connect(SOCKET s)

  {

  Write_W5100((W5100_S0_MR+s*0x100), S_MR_TCP); /*设置socket为TCP模式 */

  Write_W5100((W5100_S0_CR+s*0x100), S_CR_OPEN); /*打开Socket*/

  if(Read_W5100(W5100_S0_SSR+s*0x100)!=S_SSR_INIT)

  {

  Write_W5100(W5100_S0_CR+s*0x100,S_CR_CLOSE); /*打开不成功,关闭Socket,然后返回*/

  return FALSE;

  }

  Write_W5100((W5100_S0_CR+s*0x100),S_CR_CONNECT); /*设置Socket为Connect模式*/

  return TRUE;

  /*至此完成了Socket的打开连接工作,至于它是否与远程服务器建立连接,则需要等待Socket中断,

  以判断Socket的连接是否成功。参考W5100数据手册的Socket中断状态*/

  }

  /**

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭