当前位置:首页 > 物联网 > 网络协议
[导读] 很多人应该还记得第一次使用手机接收简讯或是下载网页的情形。现在,手机只要几秒就能下载高分辨率的影片,传输率比以前的第一台笔记本电脑更高。不过,无线网络往后的目标不只是让下载速度更快而已。

很多人应该还记得第一次使用手机接收简讯或是下载网页的情形。现在,手机只要几秒就能下载高分辨率的影片,传输率比以前的第一台笔记本电脑更高。不过,无线网络往后的目标不只是让下载速度更快而已。

十年内,连网装置的数量会是连网用户的十倍以上。因此,未来的无线标准将持续演进,藉以满足全新案例的需求,网络不仅可以连接不同的人,还能连接对象。

除了运用全新的无线技术,这些功能还必须仰赖新款仪器并降低售价。未来的装置要能够以新的方法执行无线测试,因此以国家仪器(NI)为例,该公司不断改善PXI平台、迎接未来无线测试的挑战。
 

ITU擘划无线技术未来 三大使用案例出线

国际电信联盟(ITU)针对2020年国际行动通讯(IMT-2020)提出愿景,并依据多种使用案例,点出未来无线标准的需求。这项愿景提供5G技术需求的交流架构,并说明三种不同的使用案例(图1)。

图1 三种5G使用案例

这些使用案例具体指出未来行动通讯标准的需求,也同时反映了802.11ad、802.11ax、Bluetooth 5.0与NFC等技术千变万化的需求。

第一种无线使用案例「增强型行动宽带(eMBB)」说明了未来无线技术在网络功能与尖峰数据速率上的预期发展。eMBB(enhance Mobile BroadBand)技术使用较大带宽,并结合较高阶调变机制与MIMO/波束赋形技术,因此能达成的尖峰数据速率更高。尤其在5G方面,eMBB使用案例能够达成10Gbit/s下行传输率,速度比单一载波LTE还快上100倍。

第二种无线使用案例「大规模机器类型通讯(mMTC)」能以较低廉的成本,为更多地方、装置提供无线网络。透过连接更多地点的更多装置,mMTC技术将能够连接智慧城市中的红绿灯、汽车,甚至高速公路。

不久之后,以经济实惠的方式在更多工业物联网应用中连接更多装置的需求,将带动M2M通讯与窄频物联网(NB-IoT)等全新行动技术的发展。

最后,第三种使用案例则是「超可靠机器类通讯(uMTC)」。这时候,潜时与封包误差率就成了无线网络的两项关键需求。比如医生可透过无线网络连接的机器人执行远程手术,或是驾驶可得知前方事故而避免了大规模的连环车祸。在这两种应用中,稳定的无线通信连结不只提供便利,还能拯救生命。

未来无线技术的需求不只推动了全新无线标准的发展,也改变了工程师设计与测试行动装置的方式。比方说,5G与未来标准由于带宽较宽,因此必须配有带宽较高的RF仪器。另外,MIMO与波束赋形等多天线技术需要模块化的弹性仪控,才能有效测试单天线装置、8&TImes;8MIMO装置与其他设备。最后,价位较低的无线电也必须搭配成本较低的无线测试方法。无线电共占目前现今方案总值的20%,因此新一代测试设备必须提供速度更快、种类更多的平行测试方法。

向量讯号收发器的演进

2012年,NI发表全新的PXI向量讯号收发器(VST)。此款VST十分特别,在单一PXI模块中结合了6GHz RF讯号产生器与分析器,还有可供使用者设定的FPGA。此仪器不但提供优异的RF效能,适合用于研发与制造测试等多种应用,并具备了可供使用者设定的FPGA,能够执行量测加速与通道仿真等不同应用。

不过,无线技术一直演进,RF设计与测试的方式也必须跟着推陈出新。因此,NI推出第二代VST,以更小的机身提供更大带宽、频率范围与FPGA。

带宽需求渐增 仪器须抢先一步

过去十年来,无线标准不断演进,因此能够使用更宽的带宽通道、达成更高的尖峰数据速率。举例来说,Wi-Fi自2003年的20MHz逐步提升至40MHz,现今的802.11ax标准甚至可达160MHz。

行动信道则由GSM的200kHz跃升至现在LTE-Advanced技术的100MHz。未来的LTE-Advanced Pro与5G等技术将进一步带动此类趋势。

特别是在测试半导体装置时,仪器的带宽需求经常超越讯号带宽。举例来说,在数字预失真(DPD)的条件下,测试RF功率放大器(PA)时,便须使用测试设备撷取PA模型、针对非线性动作执行修正,并藉此产生正确的波形。

多数情况下,进阶DPD算法需要3至5倍的RF讯号带宽(图2)。这样一来,在LTE-Advanced(100MHz讯号)标准下,可能需要500MHz的仪器带宽,针对802.11ac/ax(160MHz讯号),仪器带宽更须高达800MHz。

图2 使用5倍讯号带宽的DPD算法

第二代VST效能改善最大的地方在于瞬时带宽的提升:最高可达1GHz。工程师能够运用带宽较大的第二代VST解决目前仪控无法克服的应用挑战。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭