当前位置:首页 > 汽车电子 > 汽车电子技术文库
[导读] 发动机爆震传感器的用途是通过监控发动机振动来提高发动机效率和性能。  发动机控制单元 (ECU) 使用该数据调整燃油空气比,以减少“发动机发出碰撞声”并更正发动

发动机爆震传感器的用途是通过监控发动机振动来提高发动机效率和性能。  发动机控制单元 (ECU) 使用该数据调整燃油空气比,以减少“发动机发出碰撞声”并更正发动机正时。  TI 的 TPIC8101 可用作此类发动机爆震传感器的信号调节器。 新型解决方案有时会将该功能集成到发动机 ECU 的一个 MCU 中,不过,这意味着可能更多地以远程方式完成该处理过程(由于微控制器较低的温度等级),这可能会导致信号劣化。  可通过查看来自爆震传感器的信号的提取情况(与系统的噪声相比)来验证 TPIC8101 的性能。

简要的工作原理:

TPIC8101 执行爆震传感元件的信号调节,这些元件是谐振压电式传感器元件。  在通过输入放大器之后,噪声会从信号中过滤掉(将一个带通滤波器集中在传感元件的中心频率上)。  随后对信号进行整流和集成。  然后可以使用数字方式或通过模拟信号传输该输出。  ECU 监控该信号的强度以确定爆震发生的时间。

 

 

图 1: TPIC8101 内部方框图

爆震传感器信号调节器的目的之一是抑制所有带外噪声,因为发动机已经是固有的噪声环境。  因此,系统提供的信噪比 (SNR) 非常重要。  具体而言,带通滤波器决定从系统抑制噪声的情况。 要测量带通滤波器的性能,必须执行以下步骤。

选择带通滤波器中心频率、集成时间常数、放大器增益和集成时间窗口等参数(如 TPIC8101 数据表的第 9.2.2 节中所述)。  必须根据系统级要求设置这些参数,也可以使用表 1 中示例测试设置中的值。

使用函数发生器以指定的频率和振幅生成正弦波,以模仿爆震传感元件的输出。

记录信号的峰值电压。

调整输入信号的频率并重新测量信号。

然后将生成输出电压图(相对于输入频率),通过该图可以查看带通滤波器的相对 SNR 值。

测试数据:

该测试数据将 TPIC8101 与竞争对手的器件进行比较,以显示带通滤波器中的差异如何影响器件性能和 SNR。 TI 器件和竞争对手的器件是按照与表 1 相同的方式进行配置的。 

 

表 1: 测试设置

 

字节

 

数据

 

配置

 

 

配置为

 

第 1 个

 

0100 0110

 

预分频器

 

11

 

8MHz

 

第 2 个

 

1110 0001

 

MUX

 

1

 

Ch2

 

第 3 个

 

0010 1001

 

BPF

 

41

 

6.94Khz

 

第 4 个

 

1100 0000

 

集成时间常数

 

0

 

40uS

 

第 5 个

 

1010 0010

 

放大器增益

 

34

 

0.381

 

 

表 2 显示了各种频率输入信号的输出信号振幅的测试数据。  已对每个器件的带通滤波器进行编程,使其具有 6.94kHz 的中心频率,因此应抑制远离该中心频率的输入信号。

 

 

表 2: 测试数据

 
 

1KHz 时的

振幅 (V)

 

3KHz 时的

振幅 (V)

 

6KHz 时的

振幅 (V)

 

7KHz 时的

振幅 (V)

 

8KHz 时的

振幅 (V)

 

10KHz 时的

振幅 (V)

 

50KHz 时的

振幅 (V)

 

TPIC8101

 

最大

 

0.53

 

1.12

 

3.36

 

3.84

 

2.72

 

2.04

 

0.6

 

中间

 

0.4

 

0.76

 

1.84

 

2.32

 

1.84

 

1.4

 

0.47

 

最小

 

0.34

 

0.68

 

1.44

 

1.84

 

1.36

 

1

 

0.4

 

竞争对手产品

 

最大

 

0.5

 

0.5

 

2.52

 

2.88

 

2.08

 

0.72

 

0.5

 

中间

 

0.3

 

0.25

 

1.16

 

1.6

 

1.22

 

0.06

 

0.2

 

最小

 

0.04

 

0.04

 

0.56

 

1

 

0.48

 

0

 

0

 

 

 

 SNR 的公式为:

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭