当前位置:首页 > 物联网 > 物联网技术文库
[导读] 律师这种职业能藉由争辩对法条的不同见解而拿到报酬,可惜工程师没这么幸运──如果有技术规格写得不清不楚,产品设计师最后还可能会因为做出了错误的诠释而付出惨痛代价。 以上是笔者最近与产业组织

律师这种职业能藉由争辩对法条的不同见解而拿到报酬,可惜工程师没这么幸运──如果有技术规格写得不清不楚,产品设计师最后还可能会因为做出了错误的诠释而付出惨痛代价。

以上是笔者最近与产业组织Thread Group主席Grant Erickson交谈后领悟到的心得;Thread在不久前宣布,已经有分别来自于ARM、NXP Semiconductors、OpenThread与Silicon Labs的四种软件堆栈(software stack)成功完成了互操作性测试,成为首批能取得Thread CerTIfied Components认证的软件堆栈。

Thread Group将这个进展视为重要里程碑,因为该组织不只是透过针对单一参考实作(reference implementaTIons)进行量测,来验证Thread 1.1规格的一致性(该组织已经在去年11月开始进行验证,当时他们公布了Thread 1.1规格的第一版硬件参考测试平台与测试框架)。

这一次,Thread Group表示,该组织藉由以包含上述四种软件堆栈的混合网络(blended network)来测试每个装置的规格一致性,又向前迈进一步;Thread Group设定的远大目标是实现「真正的连网装置生态系统多供货商选项」。

我请Erickson解释为何这是一件大事,他说明了如果没有该组织最新采取的这些额外验证步骤,可能会发生什么样的错误;他举例指出,开发符合Thread Group新规格的物联网(IoT)装置设计工程师,就算确定他从头到尾都有遵循规格,并不能保证他的产品具备互操作性。

物联网装置突然无法与其他装置通讯、甚至无法链接网络的情况并不罕见;同样的,该装置可能经历周期性故障或是丢失封包…这种情况为什么会发生?

Erickson解释,技术规格可能是经过担保(under-written)的,这并不一定很罕见,特别是当技术规格很新的时候,产业组织会随着时间定期更新规格;在推出最新的Thread 1.1规格时,立即的问题就是如何确保用户在Thread认证产品上有更一致的使用体验。

但采用相同芯片与软件堆栈的Thread产品或许可以互通,但它们可能无法顺利与其他采用不同芯片与软件堆栈的Thread认证产品共同运作。

Erickson表示,互操作性问题通常导因于对规格的的不同诠释:「举例来说,规格可能载明要遵循三个步骤,但是并没有标示这三个步骤的优先级;」或许实际产品的变异性在处理上并不是什么大问题,例如Wi-Fi产品:「你只要将产品重新启动,就能让它联机。」

但相较之下,物联网装置必须在一个电池寿命是关键所在的、条件不那么宽松的环境中运作:「你无法承担重新启动装置所消耗的电池电量;」Erickson将物联网形容为一种要求更为严格的任务关键网络,并认为Thread Group正在提供更强固的Thread 1.1认证计划。

在被问到这次还有其他哪些新讯息(与去年秋天发布第一版1.1规格相较)时,Erickson指出了由Nest Labs/Google所开发之OpenThread的加入:「我们的第一个计划只涵盖三种软件堆栈,」分别来自ARM、NXP与Silicon Labs:「但现在有四种。」

那Thread 1.1与Thread 1.0 (符合此规格的产品并未商用)在基本上到底有什么不同?Erickson表示:「1.1规格有两项主要功能,包括应用导向的频道灵活性(applicaTIon-directed channel agility),以及密钥变换(key change)。」

Erickson 解释,Thread 1.1产品具备侦测空域中干扰的能力,并会自动Thread网络内的净空频道,不须用户干预;类似的,当出现安全性威胁,Thread的应用层能重设一个主密钥(master key),并驱动网络中新一轮的旋转密钥(rotaTIng keys),使得黑名单(black list)的取得或是移除某个连网装置更容易。」

而Ericson总结指出,Thread Group及其成员:「在提供互操作性──不只是规格一致性──方面已经超越了大多数的技术联盟,这将为终端用户带来更佳的产品体验;」现在Thread Group的成员已经可以提交零组件以及产品进行测试与Thread认证,而他也承诺,几星期之后Thread 1.1规格就会向大众公开。

编译:Judith Cheng

(参考原文: Thread Adds Stitch to Spec,by Junko Yoshida)

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭