当前位置:首页 > 物联网 > 可穿戴设备
[导读] 智能手机与穿戴式产品将加速无线充电市场成长。因受限于成本、标准规格等因素影响,无线充电导入终端产品情况不如预期。然而,随着新一代智能手机规格发布及穿戴式产品成长飞速,无线充电有望搭上这波浪潮,未

智能手机与穿戴式产品将加速无线充电市场成长。因受限于成本、标准规格等因素影响,无线充电导入终端产品情况不如预期。然而,随着新一代智能手机规格发布及穿戴式产品成长飞速,无线充电有望搭上这波浪潮,未来市场可望加速爆发。

今年才推出iPhone 7,有关iPhone 8的讨论就随之而来。十周年版的iPhone 8在设计上将如何力求创新,也为各界所乐道。其中,传闻已久、内建无线充电的功能虽已不是第一次出现,但随着苹果逐步简化孔线的设计趋势,iPhone 8导入无线充电功能似乎不无可能。

无线充电导入手机市场限制重重

剪掉电子设备的电源线,一直被认为是一件很「酷」的事,但为何出货排名前十名的手机业者中,只有三星(Samsung)将无线充电置入高阶手机中呢?其主要原因包含:

1.置入成本高:目前若要加入无线充电功能,手机中的接收端(RX)须增加3∼5美元,而发射端(TX)须增加8∼12美元,确实对手机业者造成不少的压力。

2.发热问题:无线充电因为效率较差,一般转换率于70∼75%,剩余消失的能源,会转换成热能,而一些手机由于较易发热,造成消费者负面评价。

3.对位问题:理想中的无线充电应该像Wi-Fi一样,当消费者进入这个空间后,就应该可以收到能量;但以目前的技术,皆须要放在某一个小小的平面上,且对不准就无法充电。

4.无线充电不能用于金属机壳中:目前高阶手机仍以使用金属机壳为主流,然而因为磁感应的特性,导致金属机壳无法使用此功能;磁共振虽号称可破解此问题,但目前尚未有产品量产。

5.专利及权利金问题:各家厂商于近年不断地申请无线充电相关的专利,看似风平浪静,底下却是暗潮汹涌,等待出货量暴增后,成为手里的筹码。目前WPC对外宣布,RX没有专利及权利金问题,而部分IC供货商,如恩智浦(NXP)/德州仪器(TI),宣布出货中的IC皆有支付权利金给Fulton;AFA则是生产厂须支付权利金给方案商(如Qualcomm、WiTricity)

6.联盟宣传不足:联盟靠收取会员年费来支持营运,然而光是支付各大展览,以及基本营运开销已相当吃紧,更别提花大笔金钱来宣传联盟品牌给终端消费者。另外联盟Logo遭到仿冒问题严重,并没有专门的人来处理,让市场上充斥着不良或是有瑕疵的产品,造成消费者对于无线充电的使用经验不良,无形也影响了无线充电的发展。

7.两大阵营:有竞争固然是好事,但是双方阵营开始相互的攻击对方,让手机业者对于两阵营所提的技术疑虑皆有所顾忌,恶性循环下,干脆先把无线充电功能从手机里抽掉。

磁感应/磁共振为无线充电两大主流技术

客观地来说,过去几年中,对于无线充电功能踌躇观望的厂商其实不止苹果一家。许多业者也都推出试验性的机种,来供内部评估,却由于上述几点,而胎死腹中,其中缺乏统一的标准被认为是最大的制约因素。目前无线充电市场上商用程度比较高的技术方案共两种:磁感应与磁共振,也因此发展出两大标准阵营。

磁感应技术顾名思义,是利用电磁感应的原理,从初级线圈中的AC电流产生磁场,并通过磁场在临近的次级线圈中形成感应电流,由此完成能量的「隔空」传递。支持此一技术的阵营是WPC(Wireless Power ConsorTIum),WPC所推出的Qi标准近年也取得了不俗的商用推广成绩。由于磁感应技术充电时,初、次级线圈间需要尽可能靠近贴合,充电距离短,所以也被称为「紧耦合」的无线充电技术。该技术优点很明显,包括能量传输效率高、系统简单,但由于充电时装置摆放空间自由度受限,且一个供电基座仅能供一个装置充电,所以灵活性与用户体验一直是跨不过去的门坎。

磁共振无线充电的技术,是将充电端和受电端做成振动频率相同的谐振电路,当一个电路通电并振动时,另一个电路会共振并产生电流。

由于产生共振的两个电路在空间距离上可以更远,所以磁共振技术也被定义为「松耦合」的无线充电方式。AirFuel Alliance是这一技术的拥护者,这个业界组织是由无线充电领域的两个标准组织A4WP(Alliance for Wireless Power)与PMA(Power Matters Alliance)在2015年6月合并而成的,双方的共识就是继续推动A4WP的Rezence磁共振标准。

和磁感应技术相比,「松耦合」的磁共振技术优点是充电距离远(垂直距离可达50mm),几乎能够通过任何物体充电,可以一次为多个装置充电,且充电装置的表面可为金属材质,显然更能让用户有「随心所欲」的感觉。当然,由于充电线圈之间的距离较远,电磁能量的耗散会比较多,效率不占优势,且在电磁干扰EMI敏感的场合应用会受限,但最重要的是商品价格为磁感应的2∼4倍。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭