当前位置:首页 > 智能硬件 > 机器人
[导读]   近几年来,随着机器人技术与控制技术的发展,机器人在日常生活和工农业生产中得到广泛应用。机器人对象是一个非线性、强耦合的多变量系统,在运动过程中。由于存在摩擦、负载变化等不确定因素,因而它还是

  近几年来,随着机器人技术与控制技术的发展,机器人在日常生活和工农业生产中得到广泛应用。机器人对象是一个非线性、强耦合的多变量系统,在运动过程中。由于存在摩擦、负载变化等不确定因素,因而它还是一个时变系统。传统的机器人控制技术大多是基于模型的控制方法,无法得到满意的轨迹跟踪效果模糊控制和神经网络等人工智能的发展为解决机器人轨迹跟踪问题提供了新的思路。普通模糊控制的控制规则大部分是人们的经验总结。不具备自学习、自适应的能力,往往还受到人的主观性的影响。因此不能很好地控制时变不确定的系统。

  在近几十年里,基于模糊逻辑开发的模糊系统已经成为非常活跃的领域,一些算法已在复杂系统的控制器设计中显示出相当的能力,而且模糊数学理论也对构造知识模型提供了极其优越的工具。

  由于神经网络具有良好的自学习、自适应、联想等智能,能适应系统复杂多变的动态特性。模糊控制和神经网络的结合成为学者研究的重点。这方面的研究最早起源于欧美国家,但在80年代末期却在日本取得了相对大的发展。目前,在知识和信息处理领域,他独立于模糊逻辑和神经网络技术,已经达到了一个特有的研究阶段。模糊和神经网络技术的融合客服了神经网络和模糊逻辑在知识处理方面的缺点,具有进行数据监督学习、处理经验知识及基于语言表达的在线学习等功能。利用神经网络非线性映射、自学习能力来调整模糊控制。使模糊控制具有一定的自适应能力,同时也使神经网络获得了模糊控制的推理归纳能力。本文对模糊神经网络在机器人控制中的应用进行研究,提出了一种模糊神经网络的机器人轨迹跟踪控制。仿真结果表明,该控制方法能很好地对机器人轨迹进行跟踪。

  机器人控制系统建立

  本系统中,立体定位系统作为主要数据输入通道,用于精确获取目标位置与机器人之间精确的相对位置。随后将这些现场实时空间信息融入先前建立的空间模型。期间需要确定前模型与实际的三维空间变换关系,即配准。

  然后,机器人根据计算机辅助系统制定的运动计划进行运动操作。运动中,立体定位系统通过对机器人与目标空间位置的不断采集,结合机器人多轴控制器进行视觉控制。机器人控制系统如图1所示。框图中输入为机器人行走驱动伺服电机的反馈电流,输出为机器人的行走速度,由伺服调速实现。

  

  图1 机器人控制系统

  本文设计的机器人为六自由度机器人:三个转动三个平动。机器人的六自由度协同完成空间运动。考虑到设计的机器人属于小型机器人,希望尽量减轻重量。这样一来,由于刚度下降而要求限定机构整体负载,同时还要考虑机构高速运动时的稳定性。而且,该多自由度机构的刚度设计取决于运动的速度与方向。

  模糊神经网络

  2.1控制系统结构

  结合机器人定位系统构建控制系统结构如图2所示,将机器人位置作为被控制量。

  

  图中e和ec分别为误差和误差变化率,输入r为机器人位置,输出y为机器人实际输出。

  2.2 模糊神经网络的结构

  该模糊神经网络为4层,如图3所示。第l层为输入层;第2层为模糊化层;第3层为模糊推理层;第4层为输出层。模糊神经网络结构为2–6–6–3。

 

  其中,i=l,2;j=l,2,。。.6。cij和bij分别为高斯函数第i个输入变量的第j个模糊集合的隶属函数的均差和标准差。

  (3)模糊推理层。将上层中的模糊量经过两两相乘,得到这一层的输出值。因此,本层的活化函数,即输出为:

 

  2.3 鲁棒控制器

  为保证闭环系统的稳定性和良好的控制效果,实时控制器由一个模糊神经网络控制器NNC和一个鲁棒控制器RC组成。这两个控制器的输出信号通过加权综合后,作为系统的控制输入[8-10],构成一个变鲁棒控制器u(k):

 

  系统仿真研究

  为了验证所提出的模糊神经网络控制算法的有效性,在MATLAB中创建模糊神经网络,利用隶属函数和模糊规则将抽象的模糊规则转化为模糊神经网络的训练样本,隐层采用在任意点可微的Tansig作为传递函数,输出层采用常用非负的Sigmoid函数。

  采用常规PID控制和模糊神经网络控制时,系统阶跃信号的响应曲线。图3为常规PID控制器和模糊神经网络控制器对正弦信号跟踪的误差响应曲线,通过对比可知:模糊神经网络控制器在动态性能方面明显优于常规PID控制器,可将正弦响应误差从0.02 rad降至0.001 rad。

 

  图 3 系统正弦误差响应曲线

  结 论

  本文将模糊控制与神经网络相结合,设计一种基于模糊神经网络的机器人位置控制系统,并将其运用到机器人轨迹跟踪控制系统中。仿真结果表明,该控制系统能够有效地克服机器人系统中存在的非线性、耦合等因素的影响,是一种很好的控制方法。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭