当前位置:首页 > 智能硬件 > 人工智能AI
[导读]   2016年9月13日消息,NVIDIA在北京举办了GPU技术大会(GPU Tech Conference),这也是GTC第一次在国内举办。在这次大会上,NVIDIA发布了Tesla P4、P

  2016年9月13日消息,NVIDIA在北京举办了GPU技术大会(GPU Tech Conference),这也是GTC第一次在国内举办。在这次大会上,NVIDIA发布了Tesla P4、P40深度学习芯片,此外黄仁勋也在北京与数以万计的AI、游戏行业的开发者们分享了他对GPU和未来计算的认知。以下内容是根据黄仁勋在GTC China 2016上的演讲实录整理。

  

  一、4年以前,AlexNet第一次带来了深度学习的爆发

  2012年一个年轻的研究员叫Alex Krizhevsky。在多伦多大学AI实验室,他设计了一个可以学习的软件,这个软件靠自己就能进行视觉识别。深度学习这个时候已经发展了一段时间,可能有20年。

  Alex所设计的这个网络,它有一层一层的神经网络,包括卷积神经网络、激发层、输入和输出,可以进行区分。这样一个神经网络可以学会识别影像或者是规律。深层神经网络所带来的结果是它会非常有效,会超出你的想象,但是它进行训练需要的计算资源超过了现代计算机的能力,它需要几个月的时间去训练一个网络才能真正地识别图像。

  Alex当时的看法是,有一个叫做GPU的新型处理器,通过一种叫CUDA的计算模式,可以适用于并行计算,用于非常密集的训练。2012年他当时设计了叫Alex的网络,提交给了一个大规模计算视觉识别大赛,是一个全球的竞赛,并且赢得了这个大赛。

  AlexNet战胜了所有由其他计算视觉专家所开发的算法。Alex当时只用两个NVIDIA GTX580,在通过数据训练了几天后,AlexNet的结果和质量引起关注。所有搞计算视觉的科学家,所有的AI科学家都非常关注。在2012年,Alex Krizhevsky启动了计算机深度学习的基础,这是现代AI的一个大爆炸。他的工作和成果在全世界引起了很大反响。

  我相信那个时刻会被记住,因为它确实改变了世界。之后有很多研究开始围绕深度学习进行。2012年斯坦福大学的吴教授(吴恩达)和我们开发了一个非常大规模的GPU配置用于深度学习的训练,很快在三年之后每一年都会有新的网络出来,能够不断地战胜其他方案获得更好的记录。

  二、声音和视觉输入铺垫了构造AI世界的基础

  到了2015年,谷歌和微软都实现了人类般的视觉识别能力。它是由软件写就的,在GPU上经过训练可以实现比人类更高的视觉识别能力。2015年百度也宣布他们的语音识别达到了超越人类的水平,这是非常重要的一个事件。这是第一次计算机能自己写程序,实现超过人类的水平。

  视觉和语音是两个非常重要的感官输入,是人类智能的基础。现在我们已经有了一些基础的支柱,让我们能够进一步推进AI的发展,这在之前是难以想象的。如果声音和视觉的输入值不可靠的话,怎么能够有机器可以去学习,可以有人类一样的行为。我们相信这个基础已经有了,这也是为什么我们认为现在是AI时代的开始。

  全世界的研究者都看到了这些结果,现在所有的AI实验室都开始使用GPU跑深度学习,这样他们也可以开始建立未来AI的基础。基本上所有的AI研究者都开始用我们的GPU。

  GPU的核心是模拟物理世界,我们用GPU创建虚拟世界用于游戏、设计,用于讲故事,比如制作电影。模拟环境、模拟物理属性、模拟周围所看到的世界,构建虚拟世界的过程如同人类大脑在想象时进行的计算。因为深度学习的发展,使我们的工作进入新的阶段,人工智能。对人类智能的模拟会是我们所做的最重要的工作之一,而且我们对此非常激动。

  三、GPU计算渗透到深度学习各个领域

  今天也是我们第一次在中国举办GTC大会,这次很大一部分内容会是关于人工智能和深度学习。我们是一个计算公司,SDK对于我们来讲是最重要的产品,GTC是我们最重要的一场盛会。大家可以看一下过去几年的成长,这是非常了不起的增速。

  今年GTC有16000名人员参加。下载我们SDK的开发人员增长了3倍,达到了40万开发人员。但最了不起的数字是深度学习开发人员在两年之内有了25倍的增长,现在下载我们的深度神经网络实验室引擎的开发人员已经增长了25倍,下载了5万5千次。

  大家到底用它干什么呢?很多都是AI研究人员,他们来自于全球各地,现在所有的实验室都会使用我们的GPU平台来做自己的AI研究,有软件公司、互联网软件提供商,还有互联网公司、汽车公司、政府、医疗成像、财务、制造等公司。现在用GPU深度学习的领域是非常广的,非常了不起的。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭