当前位置:首页 > 智能硬件 > 人工智能AI
[导读]   今天,我们就为大家从技术上揭秘科大讯飞的新一代语音识别系统。   众所周知,自2011年微软研究院首次利用深度神经网络(Deep Neural Network, DNN)在大规模语音

  今天,我们就为大家从技术上揭秘科大讯飞的新一代语音识别系统。

  众所周知,自2011年微软研究院首次利用深度神经网络(Deep Neural Network, DNN)在大规模语音识别任务上获得显著效果提升以来,DNN在语音识别领域受到越来越多的关注,目前已经成为主流语音识别系统的标配。然而,更深入的研究成果表明,DNN结构虽然具有很强的分类能力,但是其针对上下文时序信息的捕捉能力是较弱的,因此并不适合处理具有长时相关性的时序信号。而语音是一种各帧之间具有很强相关性的复杂时变信号,这种相关性主要体现在说话时的协同发音现象上,往往前后好几个字对我们正要说的字都有影响,也就是语音的各帧之间具有长时相关性。

  

  图1:DNN和RNN示意图

  相比前馈型神经网络DNN,循环神经网络(Recurrent Neural Network, RNN)在隐层上增加了一个反馈连接,也就是说,RNN隐层当前时刻的输入有一部分是前一时刻的隐层输出,这使得RNN可以通过循环反馈连接看到前面所有时刻的信息,这赋予了RNN记忆功能,如图1所示。这些特点使得RNN非常适合用于对时序信号的建模,在语音识别领域,RNN是一个近年来替换DNN的新的深度学习框架,而长短时记忆模块(Long-Short Term Memory, LSTM)的引入解决了传统简单RNN梯度消失等问题,使得RNN框架可以在语音识别领域实用化并获得了超越DNN的效果,目前已经在业界一些比较先进的语音系统中使用。

  除此之外,研究人员还在RNN的基础上做了进一步改进工作,图2是当前语音识别中的主流RNN声学模型框架,主要还包含两部分:深层双向LSTM RNN和CTC(ConnecTIonist Temporal ClassificaTIon)输出层。其中双向RNN对当前语音帧进行判断时,不仅可以利用历史的语音信息,还可以利用未来的语音信息,可以进行更加准确的决策;CTC使得训练过程无需帧级别的标注,实现有效的“端对端”训练。

  

  图2:基于LSTM RNN的主流声学模型框架

  目前,国际国内已经有不少学术或工业机构掌握了RNN模型,并在上述某个或多个技术点进行研究。然而,上述各个技术点单独研究时一般可以获得较好的结果,但是如果想将这些技术点融合在一起的时候,则会碰到一些问题。例如,多个技术结合在一起的提升幅度会比各个技术点幅度的叠加要小。又例如,传统的双向RNN方案,理论上需要看到语音的结束(即所有的未来信息),才能成功的应用未来信息来获得提升,因此只适合处理离线任务,而对于要求即时响应的在线任务(例如语音输入法)则往往会带来3-5s的硬延迟,这对于在线任务是不可接受的。再者,RNN对上下文相关性的拟合较强,相对于DNN更容易陷入过拟合的问题,容易因为训练数据的局部不鲁棒现象而带来额外的异常识别错误。最后,由于RNN具有比DNN更加复杂的结构,给海量数据下的RNN模型训练带来了更大的挑战。

  鉴于上述问题,科大讯飞发明了一种名为前馈型序列记忆网络FSMN(Feed-forward SequenTIal Memory Network)的新框架。在这个框架中,可以把上述几点很好的融合,同时各个技术点对效果的提升可以获得叠加。值得一提的是,我们在这个系统中创造性提出的FSMN结构,采用非循环的前馈结构,在只需要180ms延迟下,就达到了和双向LSTM RNN相当的效果。下面让我们来具体看下它的构成。

  

  图3:FSMN结构示意图

  

  图4:FSMN中隐层记忆块的时序展开示意图(左右各看一帧)

  图3即为FSMN的结构示意图,相比传统的DNN,我们在隐层旁增加了一个称为“记忆块”的模块,用于存储对判断当前语音帧有用的历史信息和未来信息。图4画出了双向FSMN中记忆块左右各记忆一帧语音信息(在实际任务中,可根据任务需要,人工调整所需记忆的历史和未来信息长度)的时序展开结构。

  从图中我们可以看出,不同于传统的基于循环反馈的RNN,FSMN记忆块的记忆功能是使用前馈结构实现的。这种前馈结构有两大好处:首先,双向FSMN对未来信息进行记忆时,没有传统双向RNN必须等待语音输入结束才能对当前语音帧进行判断的限制,它只需要等待有限长度的未来语音帧即可,正如前文所说的,我们的双向FSMN在将延迟控制在180ms的情况下就可获得媲美双向RNN的效果;其次,如前所述,传统的简单RNN因为训练过程中的梯度是按时间逐次往前传播的,因此会出现指数衰减的梯度消失现象,这导致理论上具有无限长记忆的RNN实际上能记住的信息很有限,然而FSMN这种基于前馈时序展开结构的记忆网络,在训练过程中梯度沿着图4中记忆块与隐层的连接权重往回传给各个时刻即可,这些连接权重决定了不同时刻输入对判断当前语音帧的影响,而且这种梯度传播在任何时刻的衰减都是常数的,也是可训练的,因此FSMN用一种更为简单的方式解决了RNN中的梯度消失问题,使得其具有类似LSTM的长时记忆能力。

  另外,在模型训练效率和稳定性方面,由于FSMN完全基于前馈神经网络,所以不存在RNN训练中因mini-batch中句子长短不一需要补零而导致浪费运算的情况,前馈结构也使得它的并行度更高,可最大化利用GPU计算能力。从最终训练收敛的双向FSMN模型记忆块中各时刻的加权系数分布我们观察到,权重值基本上在当前时刻最大,往左右两边逐渐衰减,这也符合预期。进一步,FSMN可和CTC准则结合,实现语音识别中的“端到端”建模。

  最后,和其他多个技术点结合后,讯飞基于FSMN的语音识别框架可获得相比业界最好的语音识别系统40%的性能提升,同时结合我们的多GPU并行加速技术,训练效率可达到一万小时训练数据一天可训练收敛。后续基于FSMN框架,我们还将展开更多相关的研究工作,例如:DNN和记忆块更深层次的组合方式,增加记忆块部分复杂度强化记忆功能,FSMN结构和CNN等其他结构的更深度融合等。在这些核心技术持续进步的基础上,科大讯飞的语音识别系统将不断挑战新的高峰!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭