当前位置:首页 > 物联网 > 物联网技术文库
[导读]   便携式电子产品与我们的生活日益密切,使用可穿戴设备已经成为消费新潮流。在市场日益显著增长的同时,如何提高电量计的准确性成为了亟待解决的问题。传统内置于可穿戴设备的电量计可提供的精确度约&pl

  便携式电子产品与我们的生活日益密切,使用可穿戴设备已经成为消费新潮流。在市场日益显著增长的同时,如何提高电量计的准确性成为了亟待解决的问题。传统内置于可穿戴设备的电量计可提供的精确度约±8%。因此如果指示器显示剩余电量为10%,那么实际值可能低至2%。用户往往以为设备可以再工作一段时间,而系统却突然意外关闭,丢失未保存的关键数据和工作,为用户的使用带来不便。试想如果这种故障发生在医疗环境,还有可能危及生命。

  通过添加电量计量功能的元件可以提高电量计的准确性,但这就有可能增加设备的尺寸和重量,而如今的消费者需要更纤薄、可集成更多功能的便携式/可穿戴设备,因此设计人员需要考虑使用高能效的元件。

  传统电量计量方案:库仑计数法

  库仑计数法是最常用的电量计量法,它采用高精度的电流检测电阻,连续监测电池的输出电流。电流随时间而集成,并将结果与已知的最大电量进行比较,以计算可用的剩余电量。

图1:库仑计数法

  库仑计数法的最大弊端在于其非常不准确,导致意外关机的可能性非常大。因为电池的自放电电流不流过外部检测电阻,所以它不能被检测到。而且这种自放电电流受电池温度的影响,自放电事件导致环境温度升高而进一步影响精确度。此外,只有电池每次被充满电才能取得准确的测量,而事实上电池不是每次都被充满电。

  库仑计数法不仅不准确,而且由于其需要检测电阻,导致成本增加并占用更大的PCB空间,而检测电流流过检测电阻会消耗额外的电池电量,干扰主电池性能,增加功率损耗。

  基于内部电阻跟踪电流-电压(HG-CVR)的混合计量法

  安森美半导体的LC70920XF智能锂电池电量计IC为克服库仑计数电量计的弊端,并解决上述设计挑战提供了绝佳解决方案:采用基于精密的模数转换(ADC)技术的板载电量计,并在电量计内置误差校正和温度补偿。结合低功耗工作及高精度计量,通过减少磨损确保更长的电池使用时间,此外,没有外部检测电阻意味着没有功率损耗并节省宝贵的PCB空间。

  LC70920XF基于称为HG-CVR的独特计量法,以±2.8%的误差测量电池的相对电荷状态(RSOC),即使在相对不稳定的条件下,包括温度、老化、负载及自放电。

  精密的参考电压对准确的电压测量至关重要。LC70920XF具有精确的内部参考电压电路,且这不受温度影响,它存储参考表在其存储器中,其中包括关于电池的电压/容量、电阻/容量及电阻/温度功能的数据。

  HG-CVR法测量电池电压、温度、内部电阻和电池开路电压(OCV)。OCV是无负载电流的电池电压。测量的电池电压分为OCV和随负载电流变化的电压。变化的电压是由负载电流和内部电阻产生。那么电流值由以下公式确定:

  V(VARIED) = V(MEASURED)-OCV

  I=V(VARIED)/R(INTERNAL)

  其中V(VARIED)是随负载电流变化的电压,V(MEAUSRED)是测得的电压,R(INTERNAL)是电池的内部电阻。内部电阻受剩余电量、负载电流、温度等因素影响。HG-CVR法在监测电压后提取电荷(库仑),并使用电阻配置档表和电压配置档表计算。

  然后,通过不断将测到的电压及温度与参考表中的值进行比较来计算剩余电池电量。当电池电压更低时,读数会更频繁,以确保在电池剩余使用时间变得更短时的准确的预测。

  不像其它电荷测量法,HG-CVR法能考虑到电池自放电事件,无需将设备的电池充满电用于校准,即使电池只充电至50%,也可准确地计算电池的剩余使用时间。

图2:安森美半导体专利的HG-CVR法

  如何识别老化?

  通过重复放电/充电,电池内部电阻将逐渐增加,满充容量(FCC)将减少。在库仑计数法中,通常使用FCC和剩余容量(RM)计算RSOC。

  RSOC = RM/FCC  &TImes;100%

  库仑计数法必须通过学习周期预先测量减少的FCC。而HG-CVR可测量电池的RSOC而无需学习周期,该方案用来计算电流的内部电池电阻与FCC高度相关。这相关性取决于电池的化学功能。利用这相关性报告的RSOC不受老化的影响。

  误差自动收敛

  库仑计数法的一个问题是误差随时间而累积,采用库仑计数法的电量计必须找机会校正它。采用HG-CVR的LC70920XF具有RSOC误差收敛的功能,误差在从开路电压的估测中不断收敛。而且,库仑计数法无法检测准确的剩余变化,因为自放电电流数太小,但HG-CVR法通过电压信息能准确检测。

  易于快速安装

  一般而言,对电量计来说,获取多个参数是必要的,这通常耗费大量资源和额外的开发时间。LC70920XF的一个独特功能是多个配置档表已内置其中,因而电池测量开始时要准备的参数量非常少,从而简化设计,加快安装。

  上电复位/电池插入检测

  当LC70920XF检测到电池插入,它开始自动上电复位。一旦电池电压超过复位释放电压(VRR),它将释放复位状态并将完成初始化以进入睡眠模式或工作模式。所有寄存器在上电复位后初始化。如果在工作时电池电压比VRR低很多,LC70920XF也自动执行系统复位。

  低功耗

  HG-CVR在预设的时间段测量电压和温度,无需监测电路持续运行,这使电量计电路能在测量间隔之间使自身进入节能睡眠模式,而且无需检测电阻,降低有源功耗。

  采用HG-CVR法的电量计减少所需元件数,降低功耗。以LC709203F为例,它比竞争方案少4倍外部元件数,支持设计工程师省去外部电流检测电阻,采用尺寸为1.76mm x 1.6mm的紧凑封装,减小约77.5%的印制电路板尺寸,较竞争方案小约45%,不仅降低物料单成本和设计时间,还提升可靠性。而且,由于所需外部元件数更少,LC709203F可显著降低总功耗,工作电流15 uA, 约竞争元件118 uA的1/10。在有源模式下,降低87%的功耗,在睡眠模式下,降低60%的功耗。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭