当前位置:首页 > 消费电子 > 触控感测
[导读]   2月2日,MagicLeap官方表示获得由阿里巴巴集团领投的约7.94亿美元融资。加上上轮由谷歌领投的5.42亿美元,至2014年年底以来,该公司总计已完成13.4亿美元投资,总估值约45亿

  2月2日,MagicLeap官方表示获得由阿里巴巴集团领投的约7.94亿美元融资。加上上轮由谷歌领投的5.42亿美元,至2014年年底以来,该公司总计已完成13.4亿美元投资,总估值约45亿美元。

  这家位于佛罗里达的创业公司已经创业数十年,阵容豪华,规模庞大,但却对其核心技术讳莫如深,异常神秘。间或泄露几条演示视频,举世惊艳,旋即哗然。那么,MagicLeap究竟有何惊世骇俗的技术秘密?在此大胆推测,力图在其扑朔迷离的表象下,探究技术的实质。

一条巨大的鲸鱼从篮球场的地面中央飞跃而出

把办公室变成游戏战场

  在计算机图形学领域,三维场景渲染演示技术的演化进程可以大致划分成如下的历史阶段:针孔相机、双目立体视觉、光场、数字全息。简而言之,针孔相机演示技术的代表作是早期的动画电影《最终幻想》,双目立体视觉的代表作是3D版的《阿凡达》,光场的代表作就是MagicLeap,数字全息技术的代表作是《星球大战》中的场景。

最终幻想:光线跟踪法渲染,针孔相机显示技术

3D版的《阿凡达》,双目立体视觉

MagicLeap,增强现实,光场技术

星球大战,数字全息技术

  MagicLeap实现并普及了光场显示技术,这是三维场景显示技术的一场实实在在的革命,获得空前的投资自然是名至实归。那么,什么是光场?这一技术是完全崭新的吗?这一技术发展的历史脉络如何?存在其他以光场技术起家的公司吗?我们在下面的讨论中,逐一解释。

  针孔相机

  传统的光学相机,其理想模型就是针孔相机。在计算机图形学中,传统的渲染方法都是基于这种相机模型。如图7所示,从相机的光心出发,经过成像屏幕的每一个像素,发出一条射线。光学跟踪法用几何光学的物理法则计算这条射线的颜色,即为相应像素的颜色。图8展示了一个用光学跟踪法算出的渲染图像。在这里,我们需要一个概念上的转换,每个像素不是一个点,而是一条射线,这是理解光场的关键!换言之,一张相片就是通过光心的一簇射线。《最终幻想》就是用光学跟踪法来渲染制作的。

光线跟踪法中的针孔相机模型

用光线跟踪法渲染的一幅场景

  传统的显示方法,例如屏幕、LCD/LED,是基于传统观念的,即把每个像素作为一个点,从不同的角度看过去,同一个像素的颜色不变。换言之,这种显示方式失去了射线方向的信息。

  双目立体视觉

  人类具有两只眼睛,观看物体时两眼各自成像,大脑根据两眼成像的细微差别计算每一点的深度信息,从而得到立体感觉。模仿人眼,我们可以用双镜头相机得到双目立体相片。

双目立体相机

阿波罗登月计划中拍摄的双目立体相片

  本质上而言,双目立体视觉相片就是从两个光心出发的两簇射线。3D版《阿凡达》就是以此原理制作的。相对于单目相机,双目立体视觉时间复杂度和空间复杂度加倍。

  光场(Light Field)- 魔盒解释

光场(Light Field)的魔盒解释

  我们假设用一个玻璃盒子罩住一只兔子,然后透过玻璃盒子来观察这只兔子。从盒子表面的任意一点,向三维空间的任意一个方向发出一条射线,这条射线的颜色由兔子和光照条件所决定。我们用来表示玻璃盒子,表示单位向量,一条射线表示为,所有射线的集合记为。每条射线对应着一个颜色,我们用三维空间中的一个点来表示。因此,光场就是从射线空间到颜色空间的映射。换言之,光场是定义在射线空间上的矢量值函数。

  假设我们去掉了玻璃盒子中的兔子,但是这个玻璃盒子是一个魔盒,光场信息被完美保留。当我们观察这一魔盒的时候,所有经过一只眼睛的射线合成了视网膜上的一幅图像。我们可以自由地改变距离和视角,兔子在视网膜上的图像相应地自然变化,根本觉察不到兔子的消失。因此,有了魔盒,我们不再需要真正的兔子。这个魔盒就是兔子的光场。

  在光学领域中,光场是一个古老的概念。在1996年被微软和斯坦福学者引进到计算机图形学领域,发展到2016年的今天,已经整整二十个年头了。虽然在学术界,人们不懈地研究深化,真正在工业界产生影响,还是近几年的事情。MagicLeap应该算是LightField理论在现实应用中的一个巅峰。

  光场渲染我们可以用兔子的光场来取代兔子,渲染生成各种角度的照片,这样我们无需为建立兔子的几何模型,纹理模型和光照模型。对于大场景,复杂光照条件,或者复杂几何模型(如长绒玩具)等等,光场比实物的数字模型更为简单,或者光场比光线跟踪得到的渲染结果更加逼真,或者更加高效,我们用光场来渲染。这是所谓的基于图像的渲染方法。历史上,微软曾经出过一版基于光场的游戏,类似孤岛寻宝,所有场景都是从真实自然中采集,非常逼真,但是最后没有引起任何反响,无疾而终。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭