当前位置:首页 > 显示光电 > oled
[导读]   到目前为止,来自Nvidia、Mobileye与NXP等芯片供货商的信息似乎显示他们各自的自动驾驶车辆平台概念(以及他们打算如何实现)大不相同。鉴于人人都会利用他们现有的、以及他们认为可以击

  到目前为止,来自Nvidia、Mobileye与NXP等芯片供货商的信息似乎显示他们各自的自动驾驶车辆平台概念(以及他们打算如何实现)大不相同。鉴于人人都会利用他们现有的、以及他们认为可以击败对手的东西来抢占市场地位,这可以理解。

  不过值得注意的是,对汽车原厂以及一线汽车零组件供货商来说,他们面临的挑战是一样的:车子里的电子控制单元(ECU)数量越来越多,自动驾驶车辆内有各种传感器,所收集的感测数据需要被处理、分析并融合,还有安全性问题──连网汽车的罩门。

  那些挑战与先进的视觉处理技术、深度学习、地图绘制等等功能息息相关,也会影响新系统架构对处理器性能的需求。

  这会是Google自动驾驶车辆里面的模样吗?

  所以,这里有一个价值6,400万美元的问题──今日的汽车厂商以及一线汽车零组件供货商,都已经知道2020年的自动驾驶车辆系统架构了吗?

  法国新创IC设计公司Kalray的执行长EricBaissus最近接受EE TImes编辑访问时,对以上问题的回答是:他们不知道,或者说还不知道;而这也是为何这家新创公司认为,其配备288个VLIW核心的大规模平行处理器数组(Massively Parallel Processor Array,MPPA),已经来到了进入市场的好时机。

  Kalray最初是为法国的原子能委员会(CEA),开发核子弹模拟所需的极限运算技术;而该公司现在则是锁定关键性嵌入式市场(例如航天),还有云端运算。

  Baissus认为,自动驾驶车辆也属于关键性嵌入式市场的一部分,因为这类车辆需要吸收大量来自车外、车内各个部位的数据,快速进行处理、然后用以快速做出决策;他表示,因此汽车产业:”需要可处理多域功能整合(mulTI-domain funcTIon integraTIon)还有能以超高水平执行处理任务的新一代处理器。”

  当然,所谓的”众多核心(manycore)革命”已经展开;不过Baissus表示:”还没有人成功设计出大规模平行、拥有超过100颗核心的“超级计算机单芯片”;”Kalray最新一代的288核心处理器Bostan,整合了16个各自有17颗核心的处理器丛集,配备2MB共享内存(SMEM)、数据传输速度每秒80GB,并有16个系统核心。

  此外,Bostan也是能适应关键时刻的网络单芯片,支持高速以太网络接口(8x1 GbE~10GbE)。该芯片并配备高速加密与解密,以及与GPU/FPGA加速器的简易链接功能。

  因此该MPPA架构能提供DSP类型的加速,具备省电、时序可预测(timing predictability)、多域支持(举例来说,不同的处理器丛集可以执行车内不同部分所采用的不同嵌入式系统),以及可扩展的大规模平行运算(内部处理器能被结合在一起以因应系统的复杂性)。

  这种为自动驾驶车辆打造的”超级计算机单芯片”,跟Nvidia的Drive PX平台岂不是很像?Nvidia将Drive PX称为”世界最先进的自动驾驶车辆平台”,号称该平台结合了深度学习、传感器、环景视频等等功能。

  而对此Baissis解释,两者之间的不同点有二:首先,Kalray的解决方案是”可认证(certifiable)”的:”我的意思是我们能证明决定论(determinism),并能保证时序;在高性能运算中,1秒的延迟是可以接受,但在关键性嵌入式市场──例如航天与汽车──仅10毫秒(millisecond)的延迟都可能致命。”

  其次,他表示工程师若要使用Nvidia的芯片需要懂CUDA,但:”我们的芯片能利用标准工具以及Linux执行标准的C/C++程序代码;”汽车厂商已经有很多C语言写的旧程序代码以及算法,就算汽车厂商转向采用新的自动驾驶车辆平台,旧程序代码仍然很重要。

  并不只有Nvida预期未来的汽车会需要更多处理性能,另一家芯片业者Mobileye也在最近”预发表”了EyeQ5处理器,并承诺在2018年可提供芯片工程样本。

  EyeQ5采用先进的10纳米或以下FinFET制程进行设计,将配备8个多线程处理器核心,以及18个Mobileye新一代视觉处理器核心;该公司表示,EyeQ5能执行每秒12 Tera次运作,同时间能将功耗控制在5W以下。

  而包括Baissus在内的所有人都不敢小觑Mobileye;不同于Nvidia的Drive PX被很多产业观察家视为自动驾驶车辆的”测试平台”,Mobileye追随了商业市场在需求更高处理性能之余、也要求更低功耗水平的趋势;通过利用已经证实的视觉处理算法,EyeQ5将数据融合──结合20个外部处理器如摄影机、雷达、光达──囊括在单芯片中。

  但EyeQ5能掌管自动驾驶车辆内部的ECU吗?对此一位Mobileye发言人对EE Times解释,EyeQ5不只支持数据融合,也能执行决策,但决策的付诸行动则是在其他方面执行──也就是汽车厂商所选择的低阶ECU。

  而Kalray对其众多核心处理器的角色定位,与Mobileye与Nvidia略有不同。Baissus表示,在传感器以及机器学习算法方面,已经有很多对自动驾驶车辆来说很必要的进展:”但在处理器领域则还没有实际作为;”这也是他看到的机会所在。

  Baissus认为,新一代的自动驾驶车辆处理器需要执行超越数据融合的功能:”它们必须更像是开放性平台;”而他期望能提供一个自动驾驶车辆的开放性处理中枢──可称之为”超级ECU”。这种超级ECU能在单芯片上提供跨领域的整合功能,为包括感测、学习、安全性、网络与成本等关键元素带来更好的成果。

  未透露厂商名称,Baissus表示有领导汽车大厂以及一线汽车零组件供货商,正在采用Kalray的平台打造第一辆自动驾驶车原型,但他也坦承,目前自动驾驶车辆架构还不够成熟;不过,透过与多家主要厂商的合作,他期望能够了解更多车厂的需求,以有助于该公司定义下一代的自动驾驶车辆解决方案。而Baissus也不排除将MPPA架构授权给其他车用芯片厂商。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭