当前位置:首页 > 物联网 > 物联网技术文库
[导读]   在讨论 ATBTLC1000-XPro 低功耗蓝牙® 扩展板前,我们先快速了解一下该板所用的 ATBTLC1000 无线微控制器。 这款 SoC 器件由一个 ARM Cortex-M

  在讨论 ATBTLC1000-XPro 低功耗蓝牙® 扩展板前,我们先快速了解一下该板所用的 ATBTLC1000 无线微控制器。 这款 SoC 器件由一个 ARM Cortex-M0 微控制器、一个 2.4 GHz 无线收发器、128 kB RAM、128 kB ROM 以及 AES-128 和 SHA-256 硬件加速计组成。 此外,该器件提供的是全系列 GPIO 和串行主/从 SPI、I2C 主/从和 UART 接口连接。 该器件同时具有集成 DC/DC 转换器和电源管理单元 (PMU),组合在一起帮助 SoC 实现众多超低功耗规范模式。 同时包括一个单通道 11 位 ADC、四个 PWM 端口以及通用定时器。 另外,还使用 ROM 来存储了合适的智能蓝牙协议堆栈(蓝牙 4.1),具体包括 L2CAP 服务层协议、安全管理器、属性协议 (ATT)、通用属性协议 (GATT) 和通用访问规范 (GAP)。 应用特定规范包括接近、温度计、心率和血压。 图 1 展示了这一 SoC 器件的框图。

  该器件能够通过 1.8 至 4.3 VDC 的电池工作,使用 3.6 V 电源时,在保持 RAM 和 RTC 运行的休眠模式消耗的电流低至 1.1 μA,且在接收模式时峰值电流为 4.0 mA。

  

  图 1:ATBTLC1000 框图。

  许多物联网应用将要求电池供电型设备使用期间只需很少的电池更换次数。 郊区环境通常不是很方便,不是很远就是可能有危险,当在这些地方使用物联网传感器时,通常会因为电池寿命短而产生高额费用,对传感器制造商的品牌也会造成潜在伤害。 凭借创新的电源架构,ATBTLC1000 消除了外部稳压器和片外元件的需要。 该 PMU 块具有典型值达 83% 的高能效,包括 DC/DC 降压转换器和低压降稳压器 (LDO),可转换电池电压,向 BLE 内核和 RF 收发器供电。

  

  图 2:Atmel ATBTLC1000 Xplained Pro 扩展板。

  如开始一个基于新微控制器的设计,Atmel 的 Xplained Pro 板系列便是一种超快、超便利的方法。 Xplained Pro 板以 Atmel 的集成开发环境平台 Atmel Studio 为支持平台,配备 Atmel Software Framework (ASF)、全套板支持驱动器、代码示例和文档;且 Atmel 的所有基于 AVR 和 ARM 的微控制器产品系列均提供该板。 如图 2 中所示,ATBTLC1000 扩展板使用标准连接器针座,可方便地将各种连接形式合并在一起,包括有线和无线、电容式触摸控制、扩展 IO 和一系列基于 MEMS 的传感器。 设计时考虑到了工程师的需求,不仅让工程师加快了产品上市速度,而且还通过为每块板提供完善的文档材料和应用说明,让工程师设计时更有信心。

  ATBTLC1000 Xplained Pro 在一个模块化封装中合并了 FCC 和 ETSI 预认证无线 SoC、数字温度传感器、调试器针座支持(UART、I2C 和电流计量)以及一个 32 kHz 的晶体。 它可以连接到多个主机 MCU Xplained Pro 板。 为简化处理,该扩展板与 Atmel SAML21 Xplained Pro 板是作为一个完整套件提供的,您也可以单独购买 MCU 板。

  入门任何 Xplained Pro 平台都极其简单。 开始前您需要从 Atmel 网站免费下载 Atmel Studio(当前为第 7 版)。 下载的包中包含了 Atmel Software Framework,因此您也可以随时使用代码示例。 安装后,启动 Atmel Studio 并将扩展板连接到您的微控制器板即可。 Atmel Studio 会自动检测连接到了哪一种 MCU 和扩展板,并显示该组合的登录页。登录页提供了相关文档和规格书供您选择,以启动 Atmel Software Framework 来访问实例应用。

  如前所述,ATBTLC1000 SoC 具有智能蓝牙链路控制器,促使主机微控制器执行所有标准蓝牙服务器和客户端操作,如 GAP 和 GATT。 该 SoC 通过片载固件提供了所有 BLE 4.1 链路层和应用规范功能。 Atmel 提供了一个适配器 API 来实现与链路层固件的通信。

  

  图 3:ATBTLC1000 智能链路控制器主机连接图。

  Atmel 的 API 采用一个直接编程模型,该模型通常包含三个操作组,即平台/链路控制器初始化、设备配置以及事件处理与监视。 图 4 所示为一个简单的应用流程图。 at_ble-init() 函数调用启动了链路控制器。 接着需要设备配置来设置设备地址并命名任何相关广告数据。 该 API 采用请求、响应工作机制。 一个 API 调用可触发一个或多个事件消息,返回到调用应用。 在 Atmel 的《低功耗蓝牙 API:软件开发用户指南》1 和 Atmel 软件框架2 中可找到完整的可用 API 清单。

  

  图 4:API 编程模型 – 应用流程。

  利用一个计划图可完美地展示该 API 的工作原理:见图 5。 在此示例中,设置 GAP 广告的过程意味着外设将以无线方式发送一个单向广播数据,以便让另一蓝牙设备发现。 除了这个必需的广告数据,如设备名称和 ID,可通信的其它信息可帮助建立连接。

  

  图 5:GAP 广告过程计划图。

  这一其它数据就是调用响应数据。 函数 at_ble-init() 初始化后,在对广告函数作出调用前,需要在 at_ble_adv_data_set 函数中设置广告数据。 如果目的是广告,然后建立连接,则要调用 at_ble_adv_start(可连接)。 图 6 中的代码实例只展示了启动此过程的应用的第一部分,从定义和设置设备名称、初始化设备、设置广告响应数据,到开始广告。 这只是一个通过在设计应用时使用 Atmel 蓝牙 API 实现的简洁性实例。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭