当前位置:首页 > 物联网 > 物联网技术文库
[导读]   在车联网3.0时代,也有三大主题贯穿于产业发展,模式、技术、价值,20余年,历经前两个发展阶段,成千上万的企业领袖不断的在求解行业健康发展之道,在迷雾中触摸真理,然而,就如同数学界的三大猜想

  在车联网3.0时代,也有三大主题贯穿于产业发展,模式、技术、价值,20余年,历经前两个发展阶段,成千上万的企业领袖不断的在求解行业健康发展之道,在迷雾中触摸真理,然而,就如同数学界的三大猜想一样,历经了几百年几代人的努力才解出其中一二,我们行业的三大猜想一样需要时间和智慧来证明。

  猜想一:车联网3.0时代, 政策影响会逐渐淡出,倒逼企业重构运营模式?

  费马猜想由17世纪法国数学家费马提出,经过三个半世纪的努力,这个世纪难题才利用了众多新的数学,如代数几何中的椭圆曲线和模形式,以及伽罗华理论和Hecke代数等,由普林斯顿大学英国数学家安德鲁·怀尔斯和他的学生理查·泰勒于1994年成功证明。而安德鲁·怀尔斯(Andrew Wiles)由于成功证明此定理,获得了1998年的菲尔兹奖特别奖以及2005年度邵逸夫奖的数学奖。

  不可否认,车联网2.0时代,政策是引爆市场的最重要动力,市场规模急速扩大,但随着5号令的贯彻,同样带来了白热化的市场竞争,终端价格一低再低,服务费用一降再降,本来可以得益于政策带来的市场增长,运营商却面对着无钱可赚、勉强维持的局面。

  任何一个健康的市场,政府这只看得见的手都只会偶尔出手引导、整顿,所以政策的影响在未来一定会慢慢消解,现实的窘境也在逼迫着运营商来减轻对政策的依赖。

  针对这种情况,各路诸侯纷纷寄希望于新的商业模式来扭转其所面对的困局,而模式创新恐怕也是去年最多被人提及的口号。2015已经过去,这些新的商业模式,有的已经被市场证明无效,有的还在继续探索,而有的已经开始展现出潜力。而到底谁才能站到最后,回答这个世纪难题?我们猜想,答案已经在那里,等待我们去辨识。

  猜想二:车联网3.0,技术创新是解决行业难题的关键因素?

  1852年,弗南西斯·格思里提出了四色猜想,近100年内没人能够解决。后来美国数学家富兰克林于1939年证明了22国以下的地图都可以用四色着色。1950年,有人从22国推进到35国。1960年,有人又证明了39国以下的地图可以;随后又推进到了50国。直至电子计算机问世,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程。美国伊利诺大学哈肯在1970年着手改进“放电过程”,在1976年6月,他们在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明,轰动了世界。

  从车联网1.0到即将到来的3.0,商用车车联网领域一直在有条不紊的向前发展,就像四色猜想的证明那样,从22到35、到39、到50。但进入互联网时代之后,尤其是北斗系统与移动互联网的广泛应用,传感器与各种芯片的价格大幅下降,大量的新技术开始引入了车联网运营领域。

  不仅我们的行业受益于技术的进步,整个社会也因技术的迭代获得更多便利。不少人不仅寄希望于新技术能打破原来严重依赖终端差价与服务费用等旧的盈利模式,更是希望新技术,比如大数据分析、机器学习、高精度定位与传感等应用给行业带来新的价值,从而获得更多技术带来的红利。

  技术的更新不仅仅在于单点的突破,更在于技术的联合,车联网行业会体现这种趋势吗?哪些新技术的应用能像计算机对四色猜想的帮助那样推动行业发展?

  猜想三:车联网3.0,无限接近服务价值的核心所在?

  1742年6月7日,德国数学家哥德巴赫在写给著名数学家欧拉的一封信中,提出了两个大胆的猜想,由于欧拉是当时欧洲最伟大的数学家,他对哥德巴赫猜想的信心,影响到了整个欧洲乃至世界数学界。从那以后,许多数学家都跃跃欲试,甚至一生都致力于证明哥德巴赫猜想。可是直到19世纪末,哥德巴赫猜想的证明也没有任何进展。证明哥德巴赫猜想的难度,远远超出了人们的想象。有的数学家把哥德巴赫猜想比喻为“数学王冠上的明珠”。

  在车联网运营服务业内,公认的最难解答的问题莫过于:用户价值在哪里?“从用户需求出发,提供价值给客户”这种话总是说起来容易,可由于运营服务行业的复杂性,导致了需求不是那么容易满足,价值不是那么容易发现。甚至用户到底是谁,业内也还存在分歧,是运输企业?是政府监管?是运输司机?是增值服务需求方?所以,在探求用户服务的核心价值方面,还有太多事情可以去做。

  也正因为有这些不确定和复杂性,探求用户服务的核心价值才是真正的挑战,就像哥德巴赫猜想一样,是所有数学家的梦想。

  但我们坚信,我们猜想,在车联网3.0时代,真正的价值离我们越来越近。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭