当前位置:首页 > 通信技术 > 鲜枣课堂
[导读]光纤商用化以来,随着技术的不断发展,光纤的品种经历了若干个重要发展阶段。 今天,我们把阶段历程做一个简要的回顾: ▉ 第一阶段:多模光纤(第一窗口) 1966年7月,华裔科学家高锟就光纤传输的前景发表了具有历史意义的论文。该文分析了造成光纤传输损耗


光纤商用化以来,随着技术的不断发展,光纤的品种经历了若干个重要发展阶段。


今天,我们把阶段历程做一个简要的回顾:


▉ 第一阶段:多模光纤(第一窗口)


1966年7月,华裔科学家高锟就光纤传输的前景发表了具有历史意义的论文。该文分析了造成光纤传输损耗的主要原因,从理论上阐述了有可能把损耗降低到20dB/km的见解,并提出这样的光纤将可用于通信。


在理论的指引下,四年以后的1970年,美国康宁公司真的拉出了损耗为20dB/km的光纤,证明光纤作为通信介质的可能性


与此同时,美国贝尔实验室发明了使用砷化镓(GaAs)作为材料的半导体激光(semiconductor laser),凭借体积小的优势,大量运用于光纤通信系统中。


1972年,光纤的传输损耗降低至4dB/km。


至此,光纤通信时代,正式开启。


1972-1981年,是多模光纤研发和应用期。


前期第一个使用的光纤通信波长,是850nm,称为第一窗口


早期开发使用的,是阶跃型多模光纤。接着开发了A1a类梯度多模光纤(50/125),其衰减为3.0-3.5dB/km,带宽为200-800MHz·km,数值孔径为0.20±0.02或0.23±0.02。


后来,又开发使用了A1b类梯度多模光纤(62.5/125),其衰减为3.0-3.5dB/km,带宽为100-800MHz·km,数值孔径为0.275±0.015。


这两种光纤与850nm附近波长LED(发光二极管)相配合,形成早期的光通信系统。


当时,LED光谱宽度为40nm,注入光功率为5或20μW,最大速率为5或60Mb/s。



▉ 第二阶段:多模光纤(第二窗口)


70年代末到80年代初,光纤厂家又开发了第二窗口(1300nm)


A1a类光纤衰减0.8-1.5dB/km,带宽200-1200MHz·km。A1b类光纤衰减0.8-1.5dB/km,带宽200-1000MHz·km。


与它们相配合使用的是高辐射LED,其光谱宽度为120nm,注入光功率为20μW,最大速率为100Mb/s。



第三阶段:G.652及G.653、G.654单模光纤(第二、三窗口)


1982-1992年是G.652及G.653、G.654单模光纤的大规模应用期,打开了光纤的第二窗口(1310nm)第三窗口(1550nm)


1973-1977年,世界各大光纤制造商开发了各种先进的预制棒生产工艺——康宁开发出OVD技术;日本的NTT、住友、古河、藤仓等联合开发出VAD技术;朗讯改善了MCVD技术;荷兰菲力浦开发了PCVD技术。


1982年,由美国开始,日、德等国家紧跟,全球开始大量建设G.652单模光纤长途工程。单模光纤的市场需求大增,刺激了大规模生产。


这时,康宁的OVD进一步提高了沉积速率,VAD、MCVD、PCVD都外加套管来作为增大预制棒的措施。


此后,各家都照着两步法的混合工艺来加大预制棒。


90年代,法国阿尔卡特开发了APVD技术(MCVD+等离子喷涂工艺)。


各大光纤制造商制造技术的重大进步,为常规单模光纤的广泛应用创造了更好的条件。


1984年,第三窗口(1550nm)开始启用。


同年,CCITT(国际电报电话咨询委员会)发布G.651和G.652标准。


到1985年,G.652光纤1310nm的损耗已达0.35dB/km,1550nm的损耗已达0.21dB/km。

1985年,日本、美国研发的G.653色散位移光纤商用化,其特点是把零色散点从第二窗口移到第三窗口,1550nm波长不仅损耗最低,而且色散也最小。


1988年,CCITT发布G.653标准。此光纤大量用于日本的通信干线。


90年代初,掺铒光纤放大器(EDFA)开始商用化,促使密集波分复用(DWDM)提上议事日程。


但是,G.653光纤在1550nm波长处的零色散,造成DWDM系统波道间的非线性干扰十分严重,因而没在世界上推广开来。


1995年,我国建设京九光缆工程,24芯纤中用了六根G.653光纤,一直没开通。以后,我国也没用G.653光纤。


这一时期,还产生了一种截止波长移位的光纤。它在1550nm处不但损耗低,而且微弯损耗小,适合使用光放大器的长途干线系统和海底光缆系统。


1988年,CCITT发布G.654标准。


▉ 第四阶段:光纤窗口全开,特性全面发展


1993-2006年,光纤通信窗口扩展到4、5窗口及S波段,光纤通信窗口全面打开,新开发四种新品种光纤,光纤特性更趋完善。


(1)、非零色散位移单模光纤G.655光纤(第三、第四窗口)


为抑制密集波分复用(DWDM)系统中的四波混频(FWM)和交叉相位调制(XPM),减小光通道间的非线性干扰,非零色散位移光纤(WZDSF)在1993年问世了。


先是朗讯推出真波光纤,接着康宁推出了大有效面积LEAF光纤。


这些光纤一开始工作在第三窗口,即C波段(1530-1565nm)。1995年后,扩展到第四窗口,即L波段(1565-1625nm)。


1996年,ITU-T制定了G.655标准。1998年之后,在全世界得到广泛应用。


(2)、低水峰单模光纤G.652C(第五窗口)


1998年,朗讯推出了全波光纤(即低水峰光纤),使1383nm的水峰几乎不存在(衰减<0.31dB/km),打开了光纤的第五窗口,即E波段(1360-1460nm)。


1999年,中国开始用全波光纤做光缆,用于九江电信。


2000年,ITU-T制定了G.652C标准。


2001年,康宁做出了低水峰光纤。


2002年,G.652C光纤在全世界推广。


从此,单模光纤从1260nm至1625nm波长范围内,具有优异的衰减性能。


2002年5月,ITU-T对于单模光纤通信系统光波段划分为O、E、S、C、L、U。


多模光纤850nm称为第一窗口,单模光纤O带为第2窗口,C带称第3窗口,L带为第4窗口,E带为第5窗口。



—— The End ——

本文整理自网络。


延伸阅读:

光纤工作波段的简明科普


光纤品种发展简史


免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭