当前位置:首页 > 智能硬件 > 军用/航空电子
[导读]   美国透明度市场研究公司近日发布研究报告称,2012年氮化镓半导体器件市场产值为3.7982亿美元,并将在2019年达到22.0373亿美元。其中,军事国防和宇航部分占据氮化镓半导体市场的最高

  美国透明度市场研究公司近日发布研究报告称,2012年氮化镓半导体器件市场产值为3.7982亿美元,并将在2019年达到22.0373亿美元。其中,军事国防和宇航部分占据氮化镓半导体市场的最高份额。

  报告称,2013~2019年的复合年增长率也将达到24.6%。美国在全球氮化镓器件市场中占据最大份额,2012年达到32.1%,其次分别是欧洲、亚洲和世界其他地区。而亚洲由于电子产业的快速增长,将是氮化镓半导体器件市场增长最快的地方,2013~2019年的复合年增长率预计将达到27.7%。

  由于对高速、高温和大功率半导体器件需求的不断增长,使得半导体业重新考虑半导体所用设计和材料。随着多种更快、更小计算器件的不断涌现,硅材料已难以维持摩尔定律。由于氮化镓材料所具有的独特优势,如噪声系数优良、最大电流高、击穿电压高、振荡频率高等,为多种应用提供了独特的选择,如军事、宇航和国防、汽车领域,以及工业、太阳能、发电和风力等高功率领域。氮化镓具有比硅更高的能效,因此所需热沉数量少于硅。应用领域的扩展和军事需求的增加是驱动氮化镓半导体器件市场增长的主要力量。需求量的增加主要是由于氮化镓器件所能带来的在器件重量和尺寸方面的显著改进。另外,氮化镓器件击穿电压的提升有望推动氮化镓在电动车辆中的使用量。

  2012年,由于氮化镓光电半导体在军事、宇航、国防和消费电子的使用,使得光电半导体成为全球氮化镓半导体器件市场的主要产品类型,并占据市场的96.6%。其中功率半导体器件将随着工业应用对大功率器件需求的增长成为未来增长速度最快的器件。

  在各种应用中,军事,国防和宇航部分占据氮化镓半导体市场的最高份额,2012年达到8168万美元。消费类电子是第二大应用领域,之后是信息通信技术(ICT)和汽车应用。随着4G网络的发展,对高功率晶体管和基站的需求预计将增加。因此,ICT行业对氮化镓功率半导体的需求将以最快的速率增长。

  全球光子集成电路市场呈现分散和竞争激烈的态势。主要的行业参与者包括日本的富士通(Fujitsu)公司、日亚化学工业株式会社、加拿大的氮化镓系统(GaN System)公司、美国的飞思卡尔(Freescale)半导体公司、国际整流器(IR)公司、科瑞(Cree)公司、射频微系统公司等。

  相关阅读

  氮化镓降低成本可能性大

  首先,在碳化镓部分,IMS Research指出该产品的关键市场为电源供应器、太阳能逆变器、工业用电动机等。再者,法国Yole公司预测氮化镓功率器件在2012年的销售额将达1000万美元,2012年初将是GaN功率组件市场快速起飞的转折点,而整体市场产值将于2013年达到5,000万美元规模,并于2015年快速激增至3亿5,000万美元。

  氮化镓是一种宽能隙材料,它能够提供与碳化硅(SiC)相似的性能优势,但降低成本的可能性却更大。业界认为,在未来数年间,氮化镓功率器件的成本可望压低到和硅MOSFET、IGBT及整流器同等价格。事实上,在过去两年间,氮化镓功率器件已有明显进展,例如国际整流器公司(InternaTIonal RecTIfier)已推出GaNpowIR、EPC推出eGaNFET器件,以及Transphorm推出600伏氮化镓晶体管等。

  其中,国际整流器公司推出的GaNpowIR可满足市场对功率MOSFET愈来愈高的需求,该公司表示,GaNpowIR的FOM能比现在最先进的硅MOSFET优异十倍,并在众多不同的应用皆有庞大的潜能。国际整流器全球业务资深副总裁AdamWhite表示,由于硅材料的功率芯片技术已面临瓶颈,未来效能突破空间有限,国际整流器多年前便已开始投入GaN材料技术研发。

  值得一提的是,为使GaN功率组件拥有较佳的成本结构,包括国际整流器与EPC两家公司,均是采用硅基氮化镓(GaN-on-Silicon)制程技术,如此一来,不仅成本可优于体块式氮化镓(Bulk-GaN),以硅基氮化镓制成的高电子迁移率晶体管(HEMT)也可比同级的SiC组件便宜。除上述业者外,MicroGaN、Furukawa、GaNSystem、Panasonic、Sanken和东芝(Toshiba)等业者也已加入GaN功率半导体领域。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭