当前位置:首页 > > 安森美


对于许多小的、便携式物联网(IoT)应用,“圣杯”是无线联接使用的纽扣电池使用寿命达10年。


这并非易事,因为大多数便宜的纽扣电池提供的最大容量仅约240 mAh。


通过选择睡眠电流消耗低的无线电系统单芯片(SoC),短距离和长距离无线联接都可以达到10年。


为了使容量较低的纽扣电池如240 mAh获得10年的电池使用寿命,无线设备通常在大部分时间处于睡眠状态,只是偶尔被唤醒以进行无线传输。


例如,相对于5秒的传输间隔(每小时120个无线传输)而言,7毫秒的唤醒时间产生的占空比为0.14%唤醒时间和99.86%休眠时间。


因此,纽扣电池要实现10年电池使用寿命,低功耗的深度睡眠必不可少。


为了达到10年的电池使用寿命,蓝牙低功耗是短距离到中距离无线联接的首选,取决于发射(Tx)和接收(Rx)功率,通常为30至50米。


对于任何超过1000米的更长距离,Sub Gigahertz软件定义的无线电(SDR)是理想的选择。


蓝牙低功耗


广告


蓝牙低功耗使用40通道分区(相隔2 MHz)在2.4 GHz ISM频段运行。


三个RF通道(37、38和39)专用于广告功能,可发现附近可用的设备。通道0-36专用于数据。


广告通道分配在频谱的不同部分,以提供抗802.11 / Wi-Fi干扰的能力。


广告包


广告包的数据单元称为协议数据单元(PDU),具有一个两字节的标头,用于指定数据有效载荷的类型和长度,最多37个字节(广告地址为6个字节,数据为31个字节)。


可联接的对比不可联接的


蓝牙低功耗广告包可以是可联接的(Connectable)或不可联接的(Non-connectable)。


描绘了功率分析仪捕获的RSL10系统级封装(RSL10 SIP)蓝牙低功耗模块可联接(左)和不联连接(右)的“3广告”事件,发送功率均为0 dbm。


虽然两个事件都使用通道37、38和39,并持续7毫秒,但Connectable事件包括每个通道的RX脉冲。


这是有道理的,因为Connectable事件也希望接收。所得的功率分析仪测量结果显示可联接的平均电流为711.624uA,不可联接的为504.307uA。


同时,对于蓝牙低功耗协议栈,RSL10 SIP的深度睡眠电流为160 nA(用于保留16 kbB RAM),并运行一个内部计时器以自唤醒。


RSL10 SIP电池使用寿命(5字节)


在上述条件下,


证实RSL10 SIP实际电池寿命将在10.97年(2.5秒广告间隔,可联接的)到27.26年(5秒广告间隔,不可联接的)之间。


这些计算基于使用240 mA CR2032纽扣电池和5字节数据传输(PDU)。


理想的电池使用寿命对比实际的电池使用寿命


锂离子纽扣电池随附数据表,绘制给定负载的连续放电特性。


在CR2032电池示例中,捕获了恒定190 uA负载的放电曲线。


捕获的RSL10 SIP平均电流范围为865nA至1.57uA,比190 uA曲线轻得多。


当我计算“理想VBAT”时,我用库仑计测量240 mAh ,从100%充满电量到0%电量为空,由标有“理想VBAT”的红色虚线表示。纽扣电池实际上永远不会表现出红色虚线。


知道“实际VBAT”放电曲线位于红色虚线和蓝色CR2032 190 uA放电曲线之间的某个位置,因此我已将“理想VBAT”降额15%,以得出绿色的“实际VBAT”放电曲线。


如果将数据大小从5字节增加到31字节,则展示了RSL10 SIP电池的使用寿命。


专有RF协议


专有的Sub-GHz无线电旨在用于更长距离的无线传输。


凭借153 db(16 dbm Tx功率和-135 Rx灵敏度)的链路预算,AXM0F24窄带SoC可以传输37公里或23英里(915MHz,30db衰减余量)的距离。


对于1.1公里的距离,AXM0F243超过了所需的10年实际电池使用寿命。


使用合适的无线电SoC用于短距离和长距离传输都完全有可能实现10年的电池使用寿命。


复制下方链接在浏览器中打开,立即了解有关安森美半导体联接方案的更多信息。

https://www.onsemi.cn/PowerSolutions/segment.do?method=solution&segmentId=IoT&solutionId=19116&utm_source=blog&utm_medium=blog&utm_campaign=rsl10-axm0f243&utm_content=link-connectivity-page




免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭