当前位置:首页 > 汽车电子 > 汽车电子控制
[导读]   由于瞬变、极致温度环境以及其他因素,在从使用汽油燃料的汽车转换到油电混合动力或全电力推动汽车的过程中,为汽车使用的电路以及子系统带来了许多设计上的挑战。高电压电池阵列以及连接到各种不同子系统

  由于瞬变、极致温度环境以及其他因素,在从使用汽油燃料的汽车转换到油电混合动力或全电力推动汽车的过程中,为汽车使用的电路以及子系统带来了许多设计上的挑战。高电压电池阵列以及连接到各种不同子系统,例如传动系统和其他高功率电力系统等都必须进行隔离,使电池系统处于“浮动状态”,避免漏电流或高电压到达低电压系统以及汽车外壳。插入式电动车车上的充电器在进行夜间充电时会接收240V的高市电电压并吸取高电流,因此能够抵抗瞬间变化的高电压保护就非常重要,目前汽车制造商正在寻求标准化的电池管理系统(BMS, Battery Management System)以便可以处里提供高达1000V的电池阵列。

  为了达到必要等级的隔离,光电隔离器已经成为提供高电隔离和高抗噪能力,并且消耗相较于使用变压器耦合提供隔离功能更低电力的产业标准,电池子系统因为使用了大量的电池单元、高电力噪声以及负载因进行电池充电电流产生的大幅度瞬变而变得特别困难。另外,在电池阵列本身和充电子系统的设计上,对阵列中每个电池单元的电压进行监测非常重要,必须能够使单一电池单元的故障不会造成整个阵列停止工作或对充电系统形成过载。

  电动车中典型的电池阵列由多个电池模块组成,每个模块通常包含许多独立的电池单元以及监测模块中电池单元的特殊电路,整个阵列可以提供数百伏特的电压输出,通常高于400V。监测电路取得电池电压以及其他参数,将收集到的数据数字化并通过串行外设接口(SPI, Serial Peripheral Interface)总线传送到管理电池系统的微控制器(MCU),请参考图1,接着微控制器透过控制器局域网络(CAN, Controller Area Network)总线送出控制信号到汽车中的各个子系统。

  为了隔离电池子系统和微控制器,使用光电隔离器接收电池单元监测电路SPI输出送出的串行数据并提供物理屏障,主要借助于LED发射器和光敏接受器的分隔,数百伏特的隔离可以避免瞬变、电力噪声以及其他因素对系统造成破坏,允许电池系统处于“浮动状态”,也就是和汽车车体无直接连接,另外,电流泄漏也因无汽车车体的连接因而可以降到最低。

  

  图1:典型的电池管理子系统需要多个光电耦合器提供SPI总线和微控制器间以及微控制器和CAN总线间的隔离。

  电池子系统中使用了不同型式的光电耦合器提供不同等级的电压隔离和性能以符合系统中不同部分的性能要求,请参考图2。举例来说,SPI接口通常以超过1MHz的数据率工作,并且需要处于-40°C到+125°C的工作温度范围,这些要求就带来了如ACPL-K49T和其他相似光电耦合器的使用以隔离低速片选信号,而如ACPL-M72T或其他相似产品等较高速光电耦合器则可以作为每个电池监测电路上速度较快的SPI信号线路,如串行时钟、串行数据输入和串行数据输出等,请参考图3。

  

  图2 电池监测电路上SPI连接端口的4个信号使用光电隔离器以确保不会有高电压脉冲由电池阵列穿越到低电压微控制器。

  ACPL-K49T是一个包含LED发射器、隔离屏障、光二极管接收器以及一个晶体管放大器,结构非常简单的单通道光电耦合器,请参考图3左方,这个器件可以处理高达20Kbits/s的数据率,提供VCM=1,500V时30kV/μs的高共模抑制(CMR, Common Mode RejecTIon)能力以及最低4mA的低LED驱动电流,相反地,ACPL-M72T则具有更为复杂的接收器侧结构,将光二极管耦合到跨阻放大器以及一个电压比较器的输出驱动电路以便可以更好的处理SPI总线的驱动,请参考图3中间,这个光电耦合器可以高达10Mbits/s的数据率工作,传播延迟最大为100ns,并且耗电流也仅为4mA。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭