当前位置:首页 > 显示光电 > LED照明
[导读]   宽能隙(Wide Bandgap)半导体氮化镓(GaN)及其相关化合物半导体材料,被广泛开发用于照明及各种光电元件上。氮化镓发光二极体(GaN LED)发光波长涵盖绿光至深紫外光波段,在可预

  宽能隙(Wide Bandgap)半导体氮化镓(GaN)及其相关化合物半导体材料,被广泛开发用于照明及各种光电元件上。氮化镓发光二极体(GaN LED)发光波长涵盖绿光至深紫外光波段,在可预见的未来,将完全取代传统白炽灯泡及萤光灯做为照明光源。

  另一种潜在的光电元件是微光电阵列元件(Micro Optoelectronic Device),该元件集合成千上万如发光体(Emitter)、侦测器(Detector)、光学开关(OpTIcal Switch)或光波导(OpTIcal Waveguide)等微型元件于单一晶片上。工研院预期微光电阵列元件未来将在显示、生医感测(Biosensor)、光通讯或光纤通讯、光互连 (Interconnect)及讯号处理(Signal Process)领域上扮演重要角色。

  微发光二极体阵列(Micro LED Array)透过定址化驱动技术做为显示器,除具有LED的高效率、高亮度、高可靠度及反应时间快等特点,其自发光显示--无需背光源的特性,更具节能、机构简易、体积小、薄型等优势。Micro LED比起同样是自发光的有机发光二极体(OLED)显示器,有较佳的材料稳定性、寿命长、无影像烙印等问题,其独特的高亮度特性在投影式显示应用,如微投影(Pico ProjecTIon)、头戴式光学透视显示器(See-through HMD)、抬头显示器(Head-up Display, HUD)等,更具竞争力。此外,奈秒(Nano Second)等级的高速响应特性使得LED显示器除适合做叁维(3D)显示外,更能高速调变、承载讯号,做为智慧显示器的可视光无线通讯功能。

  Micro LED技术塬理

  Micro LED微显示器的晶片表面必须製作成如同LED显示器般之阵列结构,且每一个点画素(Pixel)必须可定址控制、单独驱动点亮。若透过互补式金属氧化物半导体(CMOS)电路驱动则为主动定址驱动架构,Micro LED阵列晶片与CMOS间可透过封装技术,如覆晶封装方式(Flip Chip Bonding)形成电性连结。黏贴完成后Micro LED能藉由整合微透镜阵列(Microlens Array),提高亮度及对比度。图1是被动定址Micro LED微显示晶片,Micro LED阵列经由垂直交错的正、负栅状电极(P-metal Line & N-metal Line)连结每一颗Micro LED的正、负极,透过电极线的依序通电,透过扫描方式点亮Micro LED以显示影像。主动驱动显示器比被动矩阵驱动方式更节能、更快反应速度,向来是高解析显示器主流驱动方式。

  

  图1 Micro LED被动定址阵列架构示意图及晶片照片

  Micro LED技术挑战亟待突破

  Micro LED(《50微米(μm))存在有别于一般尺寸(》100微米)LED的特性。例如一般尺寸LED几乎没有电流拥挤(Current Crowding)、热堆积等问题,且因晶格应力释放及较大出光表面而可能有较佳的效率等优势。相对的,较大表面积的Micro LED可能因表面缺陷多而有较大的漏电路径,微小电极提高串联电阻值,都会影响发光效率。因此,微型LED阵列化製程开发及微型LED的结构设计须克服上述问题。此外,Micro LED的均匀度关係到成像品质及产品良率,为技术开发挑战之一。

  事实上,目前的Micro LED微显示器均为单光色,塬因在于单一基板上很难同时有磊晶成长不同波长,并且保持高品质的LED。因此,据文献资料显示,美商3M可能以波长转换的方式将蓝光(或UV)光透过量子井光激发层转成红、(蓝)、绿光,构成叁塬色光模式(RGB)画素。而索尼(Sony)、OKI等厂商则倾向採用以分次转贴红、蓝、绿光Micro LED磊晶薄膜的技术(Epi-film Transfer),构成彩色Micro LED阵列。在Micro LED画素大小约10微米尺度下,RGB阵列技术是全球各团队亟待突破的技术瓶颈。

  各国技术研发迭有进展

  德州科技大学(Texas Tech University)的江教授团队在2011年底发表了至目前为止,全球密集度最高(1,693dpi)的绿光主动定址Micro LED阵列晶片(图2),达视讯图形阵列(VGA)(640&TImes;480)解析度。此种微显示器结合Micro LED阵列和CMOS的驱动积体电路(IC),每个Micro LED单体下都有一驱动电晶体电路,可个别控制发光。

  

  图2 德州科大所开发的主动定址微晶粒发光二极体阵列微显示器

  美国Ostendo Technology公司透过优化半导体製程中的微影及蚀刻技术(图3),在4吋LED晶圆上实现均匀度98%,密集度高达2,450dpi的Micro LED阵列。此技术的开发有助于高解析的LED微显示器实用化。Ostendo也将运用此技术製作雷射二极体(LD)阵列,做为投影显示源,此举将比 LED微显示器在投影应用上,具有更佳的光学效率。

  

  图3 Ostendo Technology公司开发Micro LED阵列点距10μm的製程技术

  英国Strathclyde大学的Dawson教授在Micro LED的研究上投入颇多,图4为其製作的64×64微显示器。他们并将微透镜(Microlens)积体电路整合到Micro LED阵列上,用来提高显示器亮度。2010年中研究团队更衍生成立mLED公司,提供Micro LED技术平台,配合客户开发生医、微显示、列印、半导体製程光源等相关应用模组或产品。

  

  图4 mLED开发的64×64 Micro LED阵列

  图5为工研院电光所製作之240×160 Micro LED元件。元件尺寸为7.4毫米(mm)×4.9毫米,Micro LED画素间距为30微米(846dpi)。工研院电光所目前已製作出红、蓝、绿光的Micro LED阵列,并朝整合红、蓝、绿叁光色Micro LED在单一晶片中开发,以实现单晶片Micro LED全彩显示晶片。

  

  图5 工研院电光所製作的240×160蓝光LED微晶粒阵列元件影像

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭