当前位置:首页 > 嵌入式 > 嵌入式云IOT技术圈
[导读]一文了解触摸屏工作原理。

微信公众号:嵌入式开发圈
关注可了解更多的教程。问题或建议,请公众号留言;
如果你觉得本文对你有帮助,欢迎赞赏


▲长按图片保存可分享至朋友圈


一、电阻屏触控原理

    类似可变电阻,当可变电阻的两端接一个正电压V+,另一端接地,当调整电阻值后,测量调整点与接地端的电压值,然后根据欧姆定律,计算出调整点与接地点的电压值。

二、电容屏常见形式

表面电容式(SCT,Surface,Capacitive Touch)

    当手指触摸在金属层上时,由于人体电场,用户触摸屏表面时形成一个耦合电容,对于高频电流来说,电容是直接道题,于是手指从接触点吸走一个很小的电流。这个电流分从触摸屏的四个电极中流出,并且流经这四个电极的电流与手指到四角的距离成正比,控制器通过对这四个电流比例的精确计算,得出触摸点的位置。

投射电容式 (PCT,Projected Capacitive Touch)

2.1  自电容式触摸基本原理(可以实现单点+手势)

2.2  互电容式触摸基本原理(可实现多点)

本文主要说的是投射电容式相关的内容。

    支持多点触摸,在玻璃表面用一层或者多层的ITO,制作X轴和Y轴电极矩阵,当手触摸时,手指和ITO表面形成一个耦合电容,引起电流的微弱变动,通过扫描X轴和Y轴电极矩阵,检测触摸点电容量的变化,计算出手指所在位置。      

2.1 自电容式触摸基本原理       

    自电容,简单的说就是手指与大地形成一个电容,当触碰屏体本身的时候,形成一个并联电路。当手没有触碰屏体的时候,电路如下图(1)所示:


可以等效为如下电路图,Cs = 上图的Cp,电路等效图如图(2)所示:

    

当手触摸屏体的时候,由于手指与大地之间就相当于接了一个Cf的并联电容,如下图(3)所示。

等效为如图(4)所示:

    

    由上图(4)可知,并联的的级数越多,则满足如下公式:C总 = Cp + Cf 由于电路并联,则满足电压关系:

U总 = Ucp = Ucf    

则满足电流关系:

I总 = Icp + Icf   

    实际上,在玻璃表面用ITO(一种透明的导电材料)制作成横向与纵向电极阵列,这些横向和纵向的电极分别与地构成电容,这个电容就是通常所说的自电容,也就是电极对地的电容,在图(4)中就是Cp。当手指触摸到电容屏时,手指的电容将会叠加到屏体电容上,也就是图(4)中的Cf,使屏体电容量增加。 

    在触摸检测时,自电容屏依次分别检测横向与纵向电极阵列,根据触摸前后电容的变化,分别确定横向坐标和纵向坐标,然后组合成平面的触摸坐标。自电容的扫描方式,相当于把触摸屏上的触摸点分别投影到X轴和Y轴方向,然后分别在X轴和Y轴方向计算出坐标,最后组合成触摸点的坐标,我们可以形象的把这一个过程等效为图7-11。 假设如图5所示,如果是单点触摸,则在X轴和Y轴方向的投影都是唯一的,图中的红线就是投影,所以组合出的坐标也是唯一的;假设如图6,如果在触摸屏上有两点触摸并且这两点不在同一X方向或者同一Y方向,则在X和Y方向分别有两个投影,则组合出4个坐标。显然,只有两个坐标是真实的,分别是(4,5)和(9,8),而另外两个就是俗称的”鬼点”。因此,自电容屏无法实现真正的多点触摸。

三、消除鬼点常用的方法

 

分时法: 假设多点触摸是分时发生的,自电容测量方法首先确定第一个触摸点,第二个触摸点操作将会产生对应的鬼点,由于真正的第二个点与第一个点呈对角线状态,如图(6)所示,因此可以消除鬼点,这种方法需要触控的时候  间隔几毫秒的时间即可。 


分区法: 将整个触摸屏物理分割成多个区域,由于每个区域确定一个操作,这样就可以避免鬼点的操作。

  总结自电容的优点是简单、计算量小,满足X+Y的计算。缺点是单点、速度慢;

四、互电容式触摸基本原理

   

     如图(7)所示,互电容屏也是在玻璃表面用ITO制作横向电极与纵向电极,它与自电容屏的区别在于,两组电极交叉的地方将会形成电容,也即这两组电极分别构成了电容的两极。当手指触摸到电容屏时,影响了触摸点附近两个电极之间的耦合,从而改变了这两个电极之间的电容量。检测互电容大小时,横向的电极依次发出激励信号,纵向的所有电极同时接收信号,这样可以得到所有横向和纵向电极交汇点的电容值大小,即整个触摸屏的二维平面的电容大小。根据触摸屏二维电容变化量数据(触摸后电容值减小),可以计算出每一个触摸点的坐标。因此,屏上即使有多个触摸点,也能计算出每个触摸点的真实坐标。

互电容的优点是真实多点、速度快,缺点是复杂、功耗大、成本高。

另外推荐相关课程:

  韦东山老师优质嵌入式学习干货推荐:包括ARM裸机开发、Linux设备驱动程序、Linux应用程序开发、Android系统学习、Linux设备树等。

在我这里购买韦东山老师的课程还可得到本人的技术支持,手把手带你学习嵌入式!

王争老师优秀数据结构算法学习课程推荐

免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭