当前位置:首页 > 通信技术 > 有线通信
[导读]   摘 要:通过使用IDT70261 双端口RAM 实现了ARM 与TMS320C6211 DSP 之间的高速实时数据通信,给出了双端口RAM 与TMS320C6211 和ARM 的硬件连接图和

  摘 要:通过使用IDT70261 双端口RAM 实现了ARM 与TMS320C6211 DSP 之间的高速实时数据通信,给出了双端口RAM 与TMS320C6211 和ARM 的硬件连接图和ARM 驱动编写细节。

  后PC 时代,由于网络技术和集成电路技术的迅速发展,利用嵌入式系统进行数字信号处理与传输成为可能。在ARM 和DSP 构成的双处理器系统中,嵌入式作为主设备,主要完成数据处理、存储与网络传输工作,而DSP 作为从设备需要负责复杂的算法实现。

  在此高速数据采集和处理系统中,随着采样数据量的增大和处理任务的增加,对数据的传送要求越来越高,如果在两个系统端口之间没有能够高速传送数据的接口,将会造成数据传送的阻塞,严重影响系统的实时性与处理数据的能力,因此此系统设计的重点之一是主从设备之间的数据通信。本文介绍用双端口RAMIDT70261 完成TMS320C6211DSP 与嵌入式ARM920T之间的数据通信。

  1 IDT70261双端口RAM功能简介

  IDT70261 是美国IDT 公司生产的高速16K&TImes;16 的双端口SRAM,其典型功耗为750mW,它具有两个等级的存取时间:商业级有 15/20/25/35/55 ns (max),工业级有20/25/35/55ns (max)。双端口RAM 有两个完全独立的端口,它们各自有一套相应的数据总线、地址总线和控制总线,允许两个控制器单独或异步的读写其中任意一个存储单元。两个端口具有同样的对双端口RAM 的读写操作能力,但是当两个端口同时对同一地址进行读写操作时,会因为数据的冲突而造成存储或读取的错误。对同一存储单元的操作存在以下四种情况:

  (1) 两个端口不同时对同一地址单元进行读写数据。

  (2) 两个端口同时对同一地址单元进行读出数据。

  (3) 两个端口同时对同一地址单元进行写入数据。

  (4) 两个端口同时对一个地址单元,一个写入数据,另一个读出数据。

  前两种情况不会造成对双端口RAM的读写错误,第三种情况会造成写入数据的错误,第四种情况会造成读出错误。为了避免对双端口RAM 造成读写错误,IDT70261 有以下几种仲裁控制方法。

  1.1 遇忙逻辑控制

  当双端口同时对同一地址单元进行控制时,IDT70261 提供一种/BUSY 控制机制。双端口不对同一地址单元进行控制时,两个端口的/BUSY 引脚都为高,左右两个端口均可正常访问存储空间。当两个端口对同一地址单元进行存取时,一个端口的/BUSY 引脚为高(允许对存储空间的读写操作),另一个端口的引脚为低(禁止对存储空间的读写操作),哪一个请求信号在前,其端口引脚为高,另一个为低。两个端口请求读写的时间差最小为5ns,当时间小于5ns 时,系统会自动允许一个引脚读写,屏蔽另外一个引脚,防止出现对同一地址单元的读写错误。

  1.2 中断控制机制

  IDT70261 具有中断输出功能,中断工作时,双端口RAM 的两个最高地址单元3FFE、3FFF 作为“邮箱”来传递相应的命令。当中断功能不使用时,3FFE、3FFF两个单元作为正常的存储单元使用。下面介绍中断工作原理。

  左端口写地址单元3FFF,/INTR 变为有效(低电平),向右端口发送中断请求,右端口响应中断请求后,可向3FFF 地址单元执行一次读操作,清除中断标志(/INTR 变为高电平)。同理,右端口写地址单元3FFE,/INTL 变为有效(低电平),向左端口发送中断请求,左端口响应中断请求后,可向3FFE 地址单元执行一次读操作,清除中断标志(/INTL 变为高电平)。

  1.3 令牌传递原理

  IDT70261 内部有8 个独立于双端口RAM 的逻辑锁存单元,用来标明共享的双端口RAM 是否正在使用。在此工作模式下,/SEM 用作锁存器的“片选”信号,地址线A2~A0 用来寻址8 个标志锁存器,数据线D0用来标志锁存器的状态。

  端口向锁存器写入0 表示申请控制权,写入1 表示放弃使用权。当左端口要使用双端口RAM 时,先写入0 到标志锁存器,然后读出标志锁存器的状态,若读出的值为0,则左端口获得该存储单元的使用权;若读出的值为1,表明右端口正在使用该存储单元。

  此时,左端口要么循环检测锁存器状态,直到右端口使用结束,要么向锁存器写入1,撤销请求。同理,若右端口使用双端口RAM 时,仍按照上述步骤进行操作[1,2]。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

IMS的POC技术探析 0概述 备受业界关注的PoC (Push to Falk over Cellular)手机对讲业务在我国已经进入运营阶段。开通该项业务的普通智能手机用户,只要按下终端上的P

关键字: poc ims

  IMS是公认的解决FMC的统一系统架构,IPTV系统架构的实现可以基于多种网络技术,其中基于统一IMS实现是当前研究的热点。   IPTV的演进   IPTV是一种承载在IP

关键字: iptv ims 系统架构

  摘要:在LTE 移动宽带接入时代,运营商面临着更多移动终端用户采用因特网应用使用语音业务的情况。3GPP 在技术规范上以及GSMA 运营商企业联盟相应的技术体制都明确定义了在LTE网络中传送

关键字: lte ims 3gpp ott mmtel srvcc

1   引言 从4G LTE开始,语音实现方案就不再仅仅是2G/3G网络,单纯通过电路域网络提供如语音业务和其他增值业务,而是设计通过IP多媒体子系统(IMS,IP Multimedia

关键字: 4g 5G ims volte

TI最新ADC具有8-GHz带宽和10.4-GSPS采样率,覆盖了5G测试、示波器和雷达应用的最宽频谱

关键字: adc FPGA ims

在2018年IMS世界论坛上,华为荣获“最佳5G实时通信演进策略”( Best 5G Real-time Communication Evolution Strategy)、“最佳IMS解决方案”(Best IMS S...

关键字: 5G ims 华为 通信技术

视频通话需要两台联网的终端设备,通过集成的软件或第三方软件来实现音、视频实时双向传输。随着网络带宽的快速提升以及硬件设备的发展和普及,视频通话的市场也进入了发展的快车道。

关键字: 视频电话 紧急通信

随着智能手机功能性和实用性的增强,使用者越来越多,尤其适合"移动"商务人士使用。目前智能手机市场的竞争也很激烈,一方面诺基亚、摩托罗拉、三星等传统巨头想牢牢把握市场份额,另一方微软、苹果、谷歌等国际...

关键字: ims 智能手机系统

早年的可视电话如今,脉冲式拨号转盘电话已经成了博物馆中的老古董。刚发布不久的iPhone 5在全球掀起一股热潮。毋庸置疑,iPhone系列手机引领了当下触屏智能手机潮流,将我们所习惯的手机变成了一台掌上电脑。但我们

关键字: iPhone 可视电话 通讯
关闭
关闭