当前位置:首页 > 消费电子 > 视频技术
[导读]   由于图像采集系统采集的数据量大,带宽要求高,以往的图像采集系统通常使用PCI总线实现。但是计算机本身配置的PCI接口数量非常有限,而且拆装PCI接口设备需要打开机箱,一般操作人员并不具备这样

  由于图像采集系统采集的数据量大,带宽要求高,以往的图像采集系统通常使用PCI总线实现。但是计算机本身配置的PCI接口数量非常有限,而且拆装PCI接口设备需要打开机箱,一般操作人员并不具备这样的能力,导致系统应用受到限制。USB(通用串行总线)接口列可以完全解决以上难题。首先,USB2.0接口的速度已经达到480Mbps,完全可以满足图像采集系统对速度的要求。另外,USB接口是真正支持即插即用,且允许热插拨的接口,所以目前大量数据采集系统都选择使用USB2.0接口实现。

  本文利用SAA7113H实现模拟视频信号解码,并借助EZ-USB FX2单片机CY7C68013将数字图像数据直接通过USB2.0接口传输到计算机,通过PC机程序实现图像的无损采集,大大简化了采集卡的硬件设计,降低了采集卡硬件要求,有效降低了图像采集卡的成本。

  1 系统硬件设计

  系统硬件结构如图1所示。系统主要由视频解码芯片SAA7113H、USB控制芯片CY7C68013和一块容量为1kB的24C01EEPROM芯片组成。

  

 

  图1 系统硬件结构

  1.1 视频解码芯片-SAA7113H

  SAA7113H是飞利浦公司出品的一款视频解码芯片,它的作用是将输入的模拟视频信号解码为标准的8位VPO数字信号。它可以输入4路模拟视频信号,通过I2C总线对内部寄存器的不同配置可以对4路复合视频输入进行转换,改变亮度、对比度等参数。SAA7113H兼容PAL、NTSC等多种制式,可以自动检测场频,可以在PAL、NTSC之间自动切换控制。SAA7113H解码后输出的是标准的YUV 4:2:2格式数字信号。

  1.2 USB控制芯片--CY7C68013A

  CYTC68013A(EZ-USB FX2)是Cypress半导体公司推出的一款USB2.0芯片,它内部集成了增强的8051内核,支持最大48MHz的时钟频率,在相同时钟频率下,FX2的平均指令执行速度可达到标准8051的2.5倍。CY7C68013芯片内部集成了一个与8051内核相对独立的SIE(串行接口引擎),在不需要8051内核参与的情况下,通过USB端口和外部逻辑共享FIFO的方式,实现外部数据与USB端口的数据交换,大大加快了数据传输的速度,可实现的最大速度为480Mbps。

  1.3 系统硬件实现

  硬件连接方面,利用CY7C68013的I2C端口连接24C01,以便在系统上电后提取24C01中的信息,实现设备枚举,下载相应固件。利用CY7C68013模拟I2C端口连接SAA7113H,对其内部寄存器进行配置,实现解码芯片初始化操作。CY7C68013工作在Slave FIFO(从属的FIFO)模式,将SAA7113H的VPO数据总线直接连接到CY7C68013的FD总线,使用CY7C68013的IOAO端口检测数字视频的场标志信号,用于实现帧同步。将CY7C68013的SLWR*(从属写)信号量为有效,SLRD(从属读)和SLOE(输出有效)置为无效,由SAA7113H通过自身输出的27MHz同步时钟将数字视频信号以同步方式直接写入CY7C68013内部的FIFO,再通过SIE将FIFO中的数据以高速方式直接传送到PC机,实现视频数据的采集。

  2 系统软件设计

  系统软件设计主要包括固件程序设计、驱动程序设计和PC机采集程序3大部分。

  2.1 固件程序设计

  固件程序流程图如图2所示。该固件在采集卡上电后初始化CY7C68013,使其工作在Slave FIFO模式,设置总线位数为8位,以便接收SM7113H的8位数字视频信号。将EP2端点设置为批量AUTO IN传输方式,512字节4倍FIFO缓冲。一次最大传输数据包大小为512字节。利用SAA7113H的时钟信号实现同步从属FIFO写数据。

  

 

  图2 固件程序流程图

  通过模拟的I2C端口初始化SAA7113H,使其能够接收CCD摄像机的模拟视频信号,以标准的ITU656格式输出,并设置RSTO输出奇偶场标志,然后等待上位机的开始采集命令。

  在收到PC机开始图像采集命令后,固件程序首先通过IOAO端口检查SAA7113H的奇偶场信号。如果外部模拟视频信号源未连接,该信号将一直维持高电平。固件在一段时间等待并确认外部视频信号未连接的情况下,向PC机回传设备尚未准备好的信息,否则一直清空FIFO,将FIFO中已有效据清除,直到奇场信号到来,固件回送设备准备好信息给PC,以实现视频图像帧同步采集。图像数据传输过程将由SIE完全控制,固件不参与传输操作。

  2.2 驱动程序设计

  Cypress开发包中提供了一个通用驱动程序,即cyUSB.sys,该驱动程序符合Windows硬件质量实验室WHQL标准,系统直接使用该驱动程序实现图像数据采集。由于CY7C68013采用的是软配置的方案,芯片中并没有提供用于永久存放固件程序的存储器,固件程序需要在每次上电后通过外部存储器加载或从PC机下载到内部RAM中。驱动程序主要实现固件程序的装载功能,以便系统上电后,可以自动从PC机下载固件到CY7C68013,然后使用通用驱动程序完成采集卡的设备重枚举。

  在CyprESS提供的开发包中包含了一个固件下载驱动模板,即EZ-Loader Driver.系统固件下载驱动主要依赖它来实现。具体的步骤为:

  1)利用hex2c.exe将Intel HEX格式文件转换成C代码数组。

  2)将所有的EZ-Loader Driver文件连同子文件复制到一个新建的目录中。并利用第一步得到的C代码数组替换EZ-Loader Driver中firmwa re.c中的数组。

  3)在WindowsXP DDK中使用build命令在新建目录中创建固件下载驱动程序。

  4)改写驱动安装信息文件。

  

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭