当前位置:首页 > 通信技术 > 通信设计应用
[导读]   引 言   英国CML公司推出的语音编解码芯片CMX618,能够以较低的比特率进行编解码处理,并保证很高的语音质量。在此基于CMX618设计实现了一个数字语音通信系统,该系统结构简单

  引 言

  英国CML公司推出的语音编解码芯片CMX618,能够以较低的比特率进行编解码处理,并保证很高的语音质量。在此基于CMX618设计实现了一个数字语音通信系统,该系统结构简单,但功能强大,而且它的工作电压很低,功耗很小,非常适合通信领域开发使用。

  l CMX618功能与特点

  1.1 RALCWI算法

  CMX618是接近长话级的半双工语音编解码芯片,通过一种新的数据速率算法技术——RALCWI技术,对语音进行编解码处理。RALCWI是一种鲁棒的先进的复杂性波形插入技术,与其他语音编解码技术不同,它使用独有的信号分解和参数编码方法,可确保在较高的压缩率下有很好的语音质量。在声码器中,采用 RALCWI技术实现的语音质量与编码位速率在4 Kb/s以上的标准声码器话音质量基本相符。它的MOS(平均意见得分)处于3.5~3.6之间,而且表现相当优秀。

  RALCWI声码器以帧一帧为基础进行传输。在8 kHz的采样速率下,对语音信号进行分帧处理,每帧语音包含160个采样点,形成20 ms的元语音帧。语音编码器以较高的计时分辨率(8次/帧)进行语音分析,对每一个语音段都会生成一系列的评估参数。然后,使用不同的矢量量化(VQ)方法,这些估算参数被量化生成41 b,48 b或55 b的帧。值得一提的是,这些向量量化值是以多语言语音为基础进行混合编排的,包含了东西方多种语言的语音采样值。

  1.2 芯片主要功能及特点

  CMX618语音编解码芯片体积小,性能高,功耗低,其具体特点如下:

  (1)编码时,有三种位速率可供选择(2 050 b/s,2 400 b/s或者2 750 b/s)。在选择前向纠错编码(FEC)的情况下,可通过信道编码和交织处理形成3 600 b/s的位数据流(60 ms/216 b的数据包或80 ms/288 b数据包)。

  (2)解码时,可选择前向纠错(FEC)解码器对输入编码后的语音位流(216 b/60 ms或者288 b/80 ms的数据包)进行解交织和信道解码,生成纠错后的编码语音位速率为2 050 b/s,2 400 b/s或者2 750 b/s,速率依据所选的模块而定。当使用FEC解码器时,可利用“软决策”方法增强解码功能,减小误码的产生。

  (3)内部含有一个集成的语音压缩/解压器(CODEC),实现模拟语音到低位速率编码的压缩/解压过程。

  (4)芯片大部分功能,均可通过软件编程的方式,配置内部的寄存器来实现,简单方便。

  (5)具有非连续发送检测(DTX)、舒适噪声生成器(CNG)、语音激活检测(VAD)和双音多频信号检测(DTMF)的检测和产生等辅助功能,使语音性能达到最佳。

  1.3 CMX618工作原理

  CMX618内部结构图如图1所示。

  

 

  由结构图可以看出,CMX618主要由音频压缩/解压器(CODEC)、RALCWI编解码器、前向纠错编解码器和其他特殊功能模块几部分组成。

  编码时,输入的模拟语音首先要经过音频压缩/解压器(CODEC)模块,进行调节增益、A/D转换、滤波和压缩处理,然后进入编码器中开始编码。编码后,如果选择使用前向纠错(FEC)功能,则会对编码进行纠错处理,尽量消除误码。这样,编码后的语音数据,按选择的位速率和帧的结构生成数据包,利用C- BUS串行总线,传输到微控制器LPC2138中。

  解码是编码的逆处理过程。经C-BUS串行总线传输的数字语音,进入解码器(可选择FEC功能)开始解码,然后经过解压、滤波、D/A转换、调节增益等处理后,就成为可以听到的模拟语音。另外,在编码和解码期间,如果选择一些辅助功能,例如非连续发送检测(DTX)、语音激活检测(VAD)或双音多频信号检测(DTMF)时则需另行处理。

  2 系统设计实现

  2.1 微控制器

  ARM微控制器具有内核耗电少,功能强,成本低等优点,现在多应用于无线通信、GPS、智能手机开发等诸多领域。这里选用PHILIPS公司的 LPC2138作为数字语音通信模块的主控制器。LPC2138是一个基于支持实时仿真和嵌入式跟踪的32位ARM7TDMI-SCPU的微控制器芯片,较小的封装和很低的功耗使LPC2138特别适用于小型系统中。此外,由于LPC2138片内集成了ROM,RAM,A/D和多个外设模块,如通用I/O 口、定时器、串行口等,因此非常适合于通信网关、协议转换器、软件modem、语音识别、低端成像等场合,为这些应用提供大规模的缓冲区和强大的处理功能。

  2.2 系统的硬件设计与实现

  基于CMX618的语音通信模块主要由语音编解码器CMX618和LPC2138组成,如图2所示。

  

 

  该语音通信系统使用CMX618内置的CODEC模块,其内部集成了A/D和D/A转换、通道滤波、增益调节等功能,足以满足对模拟语音的抽样、量化等操作的指标要求。因此,无需再外接芯片,也节省了大量的物理空间,这在实际的开发设计中是十分重要的。

  微控制器LPC2138通过C-BUS串行总线与CMX618连接。C-BuS是一个四线中断一驱动串行系统,可在主控制器和CMX618内部寄存器间进行数据传输、控制或状态信息的发送。

  

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭