当前位置:首页 > 物联网 > 网络协议
[导读]     本文提出了一种TD-HSUPA系统的TCP优化方法:利用无线网络控制器RNC(Radio Network Controller)解析TCP连接链路上服务器的反馈包信息,

 

  本文提出了一种TD-HSUPA系统的TCP优化方法:利用无线网络控制器RNC(Radio Network Controller)解析TCP连接链路上服务器的反馈包信息,分析当前TCP连接的状态,在上行链路的TCP超时发生之前,控制NodeB对终端做优先调度并在短期内分配更多的时隙和码道,有效防止无线链路进入“TCP慢启动阶段”而影响无线带宽利用。本方法的优点在于仅在RNC内做TCP数据包的分析处理工作,不影响整个网络,有很好的系统兼容性。

  1 TD-HSUPA系统的TCP优化方法

  高速上行链路分组接入HSUPA(High Speed Uplink Packet Access)是TD-SCDMA的上行数据传输标准,作为匹配HSDPA高速下行数据传输,HSUPA通过引入了基于NodeB的快速调度、快速混合自动重传请求HARQ(Hybrid AutomaTIc Repeat Request)、高阶调制和增强专用信道E-DCH(Enhance-Dedicated Channel)等关键技术,使得TD-SCDMA理论上行最大速率为2.2 Mb/s,为在线游戏、高清视频通话等业务提供足够的带宽,丰富3G无线通信的应用。

  HSUPA的TCP数据包传输流程是:终端、RNC和远端服务器的连接建立以后,TCP数据包由终端发送,经过无线空口传输后被基站接收,然后基站会将数据包通过传输网发送给RNC,RNC提供一个路由的功能将数据包转发到核心网并最终到达远端服务器。TD-HSUPA系统的协议结构如图1所示[1]。

  

 

  在HSUPA系统中数据的发送端是终端,因为不是所有的终端都支持TCP SACK等较新版本的传输协议,大部分终端只支持标准的TCP NewReno,所以考虑到系统的兼容性问题,HSUPA系统只能以使用TCP NewReno为主。

  无线网络中优化TCP的有效手段(如TCP westwood[2]等)大都是针对数据的发送方。但是对HSUPA系统来说对所有的终端做改进比较困难,从图1中所示的HSUPA系统网络结构来看,HSUPA的拥塞控制优化工作可考虑由无线链路的接收端来做[3-4],也就是交由RNC和基站来完成。

  本文提出了一种在RNC和NodeB优化 HSUPA系统TCP的方法,结构如图2所示。

  

 

  具体方案如下:

  (1)数据由用户设备UE(User Equipment)发出后经过Node B转交给RNC,RNC解析每个数据包的TCP包头信息,由式Bw′=L/TInt[5]可计算出每个用户利用的无线链路带宽,其中L为数据包大小,TInt为数据包到达时间间隔。根据Bw′的计算结果由式Bw=αBw+(1-α)Bw′ [2]可计算得到带宽估计值Bw,其中?琢为加权系数取0.9,带宽的计算有90%都来源于先前的值,这也是平滑带宽的估计值。

  (2)RNC并不知道UE的超时重传时间RTO(Retransmission TImeout),只能通过其他的途径估算该值。TCP连接的RTO是根据数据包的往返时延RTT(Round-Trip Time)计算得到的,RTT包含有线链路的时延、RNC转发的时延和无线链路的传输时延,由步骤(1)中解析数据包可以很容易地计算有线链路的传输时延tc,RNC转发的时延相比RTO的值较小,可以认为是定值tr,无线链路的时延可以由式tw=L/Bw计算得到,其中L为TCP/IP数据包大小,可设为1 500 B,Bw为步骤(1)中计算的带宽,所以RNC侧可估算得到TCP的超时时间RTO=2×(tc+tw+tr)。

  (3)服务器收到数据包以后会发送含有反馈信息的数据包,这些含有反馈信息的数据包在到达RNC时,RNC需要解析这些数据包的TCP/IP包头信息,如果检测到这些反馈数据包含有3个重复的ACK信息,RNC将通过Iur传达信令通知Node B在下一次调度周期中临时提高该UE的调度优先级并为该UE增加物理信道以扩大该UE的可用带宽,使UE能尽快重传数据以免进入慢启动阶段,持续一个RTO时间后,Node B自动还原UE的优先级和被分配的物理信道。

  在上述方法中RNC根据对反馈数据包解析的情况分析UE出现拥塞的原因。如果拥塞出现的次数较少,则说明是无线空口环境的抖动引起,RNC根据步骤(1)计算出UE所需的带宽,并且将计算出的带宽值发送给Node B,让Node B为UE在接下来的一段时间调度增加信道数,来保证UE能够尽快重传数据。如果长时间多次出现拥塞,则说明是由其他原因所致,在HSUPA系统中这种问题由无线资源管理RRM(Radio Resource Management)来处理,所以只需要为本方案设定一个静默时间,在执行一次本方案以后需要启动一个定时器,静默一段时间后再激活本方法,静默时间应根据网络的负载情况来定,如过负载较小则可将时间设得较短,否之则需要设置较长。

  

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭