当前位置:首页 > 公众号精选 > 亚德诺半导体
[导读]本文介绍一款利用按钮式数字电位器简单高效地控制高达20V电压的完整解决方案。这款完整的解决方案提供一种可调电源,可用于需要可调电压输出的各种应用。

点击蓝字进入亚德诺半导体,然后右上角“设为标星”吧~

本文介绍一款利用按钮式数字电位器简单高效地控制高达20 V电压的完整解决方案。这款完整的解决方案提供一种可调电源,可用于需要可调电压输出的各种应用。图1显示具有可变输出功率的相应开关稳压器,使用AD5116 数字电位器和具有集成式推挽输出级的 ADCMP371 比较器。通过添加开关,而不是按钮,可以使用微控制器来调节电压


AD5116具有64个可用的游标位置,端到端电阻容差为±8%。此外,AD5116包含一个EEPROM来存储游标位置,可通过按钮手动设置。对于需要固定标准上电电压的应用,这个功能非常有用。


该电路由电压 VIN供电,最高可达20 V。AD5116和ADCMP371的电源电压 VDD 也可由 VIN生成,例如,通过ADP121等稳压器。


图1.带可变输出、通过按钮控制的高压开关稳压器。



电路工作原理


输出电压 VOUT 通过反馈网络的开关频率控制。通过分压器反馈到比较器,然后与数字电位器设置的基准电压进行比较。如果从 VOUT 获取的电压高于基准电压,比较器输出切换到低电平,以阻隔NMOS晶体管T1和PMOS晶体管T2,从而降低 VOUT。如果从 VOUT 获取的电压低于基准电压,比较器输出切换到高电平,两个晶体管切换到导通状态(饱和),从而增加 VOUT。通过这种基于比较的功能,晶体管在开启/关断模式下以短脉冲工作,使各晶体管保持低损耗。除电位器的输出电压外,开关频率还受 VOUT的负载影响。


随着数模转换器(DAC)输出电压增高,T2关断的时间变长,比较器输出相应增高。比较器输出提供一系列更高频率、速度更快的正电源输出脉冲。如果DAC输出电压降低,则情况相反。


经过滤波的VOUT 通过公式1确定。



VW 为电位器抽头W处的DAC输出电压。


AD5116的A抽头和B抽头之间的电阻标称值为5 kΩ,划分为64级阶跃。在量程的较低端,典型游标电阻 RW 降至45 Ω到70 Ω之间。相对于GND的 VW 输出电压为:



其中 RWB 为:



  • RWB是抽头W和较低端的GND之间的电阻值。

  • RAB 为电位器的总电阻。

  • VA为分压器串顶端的电压;在本例中,它等于 VDD

  • D为AD5116的RDAC寄存器中二进制代码的十进制等效值。


AD5116的RDAC 寄存器通过按钮PD和PU进行控制。默认的上电位置(例如 VOUT = 0 V)可以通过ASE引脚存储在电位器的EEPROM中。



滤波器输出:减少纹波


为了获得平稳的输出电压VOUT并减少开关T1和T2导致的纹波,需要使用额外的滤波器电路(参见图2)。在设计此滤波器时,需考虑AD5116的最大和最小开关频率,以及其工作电压范围。


对于图2所示的电路,开关频率范围约为1.8 Hz至500 Hz。因为这个值相当低,所以在确定滤波器的截止频率时,通常需要使用更大的R、L和C值。但是,滤波器的串联电阻和输出负载构成了一个分压器,会降低输出电压。所以,在选择R值时,应选择相对较低的值。


图2.用于使输出电压平稳的滤波器电路。





AD5116

  • 标称电阻容差误差:±8%(最大值)
  • 游标电流:±6 mA

  • 可变电阻器模式下的温度系数:35 ppm/°C

  • 低功耗:2.5 μA(最大值,2.7 V,125°C)

  • 宽带宽:4 MHz(5 kΩ选项)

  • 上电EEPROM刷新时间:< 50 μs

  • 125°C时典型数据保留期:50年

  • 100万写周期

  • 2.3 V至5.5 V电源供电

  • 内置自适应去抖器

  • 宽工作温度范围:-40℃至+125℃

  • 2 mm × 2 mm × 0.55 mm、8引脚超薄LFCSP封装





点分享

点点赞

点在看

免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

泰克科技这一全新的产品组合提供一整套独一无二的功能,能够满足从超低功率到超高功率的储能和电源电子设计需求。随着EA的加入,泰克科技能够为那些正在促进世界电气化的工程师们提供更全面的装备。

关键字: 电源设计

中国上海(2024 年 3 月 6 日)– 德州仪器 (TI)(NASDAQ 代码:TXN)今日推出两个全新的功率转换器件产品系列,可帮助工程师在更小的空间内实现更高的功率,从而以更低的成本提供超高的功率密度。德州仪器新...

关键字: 电源设计 变压器 氮化镓

在这篇文章中,小编将对数字电位器的相关内容和情况加以介绍以帮助大家增进对它的了解程度,和小编一起来阅读以下内容吧。

关键字: 电位器 数字电位器

1月16日,大联大控股宣布,其旗下友尚推出基于安森美(onsemi)NCP1681和NCP4390芯片以及SiC MOSFET的3KW高密度电源方案。

关键字: 电源设计

负电压电源设计在电子设备中具有广泛的应用价值。本文将介绍负电压电源设计的基本原理和方法,并探讨其应用方案。

关键字: 负电压电源 电源设计

电子电度表是一种广泛应用于电力测量和计量的设备,其电源设计的合理性和可靠性直接影响到表计的精度和稳定性。本文将详细阐述电子电度表电源设计的原理、实现方法、影响因素和实际应用效果,以突出电源设计在电子电度表中的重要性和必要...

关键字: 电子电度表 电源设计

便携式仪表中的电源设计是确保设备正常运行的关键部分。本文将介绍如何实现便携式仪表中的电源设计,包括设计思路、电源模块设计、充电模块设计、保护模块设计和应用实例等方面。

关键字: 便携式仪表 电源设计

【2023年7月27日,德国慕尼黑讯】在静态开关应用中,电源设计侧重于最大程度地降低导通损耗、优化热性能、实现紧凑轻便的系统设计,同时以低成本实现高质量。为满足新一代解决方案的需求,英飞凌科技股份公司(FSE代码:IFX...

关键字: 静态开关 MOSFET 电源设计

TFT-LCD发明于1960年经过不断的改良在1991年时成功的商业化为笔记型计算机用面板﹐从此进入TFT-LCD的世代。

关键字: TFT-LCD 显示器 电源设计

为增进大家对电源的认识,本文将对电源的分类以及电源设计的一些相关问题予以介绍。

关键字: 电源 指数 电源设计
关闭
关闭