当前位置:首页 > > 电源系统设计
[导读]在PCB设计中,电磁兼容性(EMC)及关联的电磁干扰(EMI)历来是让工程师们头疼的两大问题,特别是在当今电路板设计和元器件封装不断缩小、OEM要求更高速系统的情况下。本文分享了如何在PCB设计中避免出现电磁问题。



在PCB设计中,电磁兼容性(EMC)及关联的电磁干扰(EMI)历来是让工程师们头疼的两大问题,特别是在当今电路板设计和元器件封装不断缩小、OEM要求更高速系统的情况下。本文小编就给大家分享如何在PCB设计中避免出现电磁问题。



PCB设计中避免出现电磁问题的6个技巧


1

---串扰和走线是重点


走线对确保电流的正常流动特别重要。如果电流来自振荡器或其它类似设备,那么让电流与接地层分开,或者不让电流与另一条走线并行,尤其重要。两个并行的高速信号会产生EMC和EMI,特别是串扰。必须使电阻路径最短,返回电流路径也尽可能短。返回路径走线的长度应与发送走线的长度相同。


对于EMI,一条叫做“侵犯走线”,另一条则是“受害走线”。电感和电容耦合会因为电磁场的存在而影响“受害”走线,从而在“受害走线”上产生正向和反向电流。这样的话,在信号的发送长度和接收长度几乎相等的稳定环境中就会产生纹波。


在一个平衡良好、走线稳定的环境中,感应电流应相互抵消,从而消除串扰。但是,我们身处不完美的世界,这样的事不会发生。因此,我们的目标是必须将所有走线的串扰保持在最小水平。如果使并行走线之间的宽度为走线宽度的两倍,则串扰的影响可降至最低。例如,如果走线宽度为5密耳,则两条并行走线之间的最小距离应为10密耳或更大。


随着新材料和新的元器件不断出现,PCB设计人员还必须继续应对电磁兼容性和干扰问题。


2

---去耦电容


去耦电容可减少串扰的不良影响,它们应位于设备的电源引脚和接地引脚之间,这样可以确保交流阻抗较低,减少噪声和串扰。为了在宽频率范围内实现低阻抗,应使用多个去耦电容。


放置去耦电容的一个重要原则是,电容值最小的电容器要尽可能靠近设备,以减少对走线产生电感影响。这一特定的电容器尽可能靠近设备的电源引脚或电源走线,并将电容器的焊盘直接连到过孔或接地层。如果走线较长,请使用多个过孔,使接地阻抗最小。


3

---将PCB接地


降低EMI的一个重要途径是设计PCB接地层。第一步是使PCB电路板总面积内的接地面积尽可能大,这样可以减少发射、串扰和噪声。将每个元器件连接到接地点或接地层时必须特别小心,如果不这样做,就不能充分利用可靠的接地层的中和效果。


一个特别复杂的PCB设计有几个稳定的电压。理想情况下,每个参考电压都有自己对应的接地层。但是,如果接地层太多会增加PCB的制造成本,使价格过高。折衷的办法是在三到五个不同的位置分别使用接地层,每一个接地层可包含多个接地部分。这样不仅控制了电路板的制造成本,同时也降低了EMI和EMC。


如果想使EMC最小,低阻抗接地系统十分重要。在多层PCB中,最好有一个可靠的接地层,而不是一个铜平衡块(copper thieving)或散乱的接地层,因为它具有低阻抗,可提供电流通路,是最佳的反向信号源。


信号返回地面的时长也非常重要。信号往返于信号源的时间必须相当,否则会产生类似天线的现象,使辐射的能量成为EMI的一部分。同样,向/从信号源传输电流的走线应尽可能短,如果源路径和返回路径的长度不相等,则会产生接地反弹,这也会产生EMI。


4

---避免90°角


为降低EMI,应避免走线、过孔及其它元器件形成90°角,因为直角会产生辐射。在该角处电容会增加,特性阻抗也会发生变化,导致反射,继而引起EMI。要避免90°角,走线应至少以两个45°角布线到拐角处。


5

---使用过孔需谨慎


在几乎所有PCB布局中,都必须使用过孔在不同层之间提供导电连接。PCB布局工程师需特别小心,因为过孔会产生电感和电容。在某些情况下,它们还会产生反射,因为在走线中制作过孔时,特性阻抗会发生变化。


同样要记住的是,过孔会增加走线长度,需要进行匹配。如果是差分走线,应尽可能避免过孔。如果不能避免,则应在两条走线中都使用过孔,以补偿信号和返回路径中的延迟。


6

---电缆和物理屏蔽


承载数字电路和模拟电流的电缆会产生寄生电容和电感,引起很多EMC相关问题。如果使用双绞线电缆,则会保持较低的耦合水平,消除产生的磁场。对于高频信号,必须使用屏蔽电缆,其正面和背面均接地,消除EMI干扰。


物理屏蔽是用金属封装包住整个或部分系统,防止EMI进入PCB电路。这种屏蔽就像是封闭的接地导电容器,可减小天线环路尺寸并吸收EMI。


免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

电源系统设计

扫描二维码,关注更多精彩内容

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭