当前位置:首页 > 嵌入式 > 玩转嵌入式
[导读]学习数字逻辑这门课程的目的有两个,第一是为了后续的电路设计,是硬件工程师的入门课程;第二则是为了更好地理解计算机的工作原理,为后续嵌入式开发、软件开发等打下坚实的基础。绝大部分人应该属于后者,毕竟纯粹的硬件开发工程师职位不多。

概述

学习数字逻辑这门课程的目的有两个,第一是为了后续的电路设计,是硬件工程师的入门课程;第二则是为了更好地理解计算机的工作原理,为后续嵌入式开发、软件开发等打下坚实的基础。绝大部分人应该属于后者,毕竟纯粹的硬件开发工程师职位不多。

时序电路是数字逻辑这门课的关键,因为引入了时间这一维度,理解掌握其功能特性的难度比组合逻辑要高,因此,很多童鞋可能学到这有点晕,这是正常现象。应对办法也很简单:熟记典型的几个触发器功能特征,多做几个习题,对付考试和后续课程的理解绰绰有余。

时序电路这门课程的要求是最终能够进行简单的电路设计(包括组合逻辑时序逻辑),完成特定的功能。学会跑之前,要先学会走,也就是先看看别人的电路是怎么设计的,分析其规律,然后再尝试设计简单的电路。

分析原理

要对时序电路进行分析,需要先理解其结构特征,时序电路的基本结构如下图所示:


图1:时序电路结构特征

由图1知,时序电路由组合变换电路存储电路对外输出组合电路三部分组成。一般情况下,称存储电路中保存的数据为时序电路的状态;外部输出Z有两种形式,一种是Z只与电路的现态相关,称为Moore型电路,一种是与电路的状态和外部输入相关,称为Mealy型电路

要分析时序电路,很多教材上要写第一步做什么、第二步做什么之类的,这种方法很容易让童鞋们死记硬背,误入歧途,较为合理的方法应该是抓住时序电路的本质,即是什么导致电路状态发生改变电路的状态如何改变电路的对外输出是什么规律?这三个问题搞清楚了,画出电路的状态迁移图,根据状态迁移图对其功能进行说明,简单的分析就算完成了。

什么导致电路状态发生改变?


答:激励方程,即存储电路的输入(激励就是输入,在本课程中特指触发器的输入)

电路状态如何改变?


答:次态方程,比如J-K触发器和D触发器等,这就需要大家熟记几种典型的触发器的功能特性。当然,后面还会提到一些典型的时序电路逻辑器件如计数器、移位器等,这也需要大家灵活理解并熟记。

电路对外的输出是什么规律?


答:输出方程,就是一个组合电路,比较简单。

综上,只要抓住这三个方程,电路分析不是什么难事,大家只要掌握这个规律,没有分析不了的电路。

举例说明

根据上面的原理,下面由简单到难,分别举两个例子进行分析。

例1:试分析下图所示时序电路,画出X=101101的时序图。


图2:例1电路图

显然,这时一个同步的Mealy型电路(Z与输入和X和D触发器的状态相关),分别写出输出方程、激励方程和次态方程:


图3: 例1的三个方程

由此,可以写出电路的次态(状态转移)和输出:


图4: 例1的次态和输出表

根据输出表,画出电路的状态转移图和波形图,分别入图5和图6所示:


图5:例1的状态转移图


图6:例1的波形图

注:在画波形图时,一定要搞清楚哪是现态,哪是次态,输出是和输入和现态同步变化的(这里指的是理想情况),因此这里的D触发器是上升沿时引起状态变化,所以,要以CP从0跳变到1为界区分现态和次态

根据状态转移图,很容易看出,例1中的功能为:当输入为1时,电路状态变化,且当处于0状态时,输入1,输出为1,当处于1状态时,输入1,输出为0;其它输入(即0),电路状态保持不变,且输出为1.

例2: 分析下图的逻辑功能

其中的D0的输入为D00*D01


图7: 例2的电路图

这个电路的特点是:只有一个CP输入,没有其它输入,也没有输出,只有电路状态的转移。(另外,这四个D触发器的状态组成了电路的状态)因此,这里只需要分析其激励方程和状态转移方程(D触发器的状态转移这里不再赘述)

这个电路中每个触发器的激励方程为:


图8: 例2的激励方程

对于这样的电路,可以口述,假设Q3Q2Q1Q0初态为0000,当一个时钟脉冲来临时,Q3Q2Q1Q0转换为:0001;再来一个时钟脉冲则为:0011,类似进行分析,可以得到其转换状态为:


图9: 例2的状态转移表

类似这样的电路在后续学习中非常常见,请大家熟悉,并且最好能直接口述或绘制其状态转移图

小结

对于时序电路分析,抓住核心的三个方程(根据情况),很容易绘制状态转移图和波形图。

如有错,请各位批评指正!

文/CodingTech
著作权归作者所有,转载请联系作者获得授权


免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭