当前位置:首页 > > 21ic电子网
[导读]雷达系统的基本功能是可以探测目标并测量相关参数,包括目标的距离、速度和角度等。下图显示了雷达系统的基本处理过程,包括发射机、天线、接收机、显示器等部分。

雷达系统的基本功能是可以探测目标并测量相关参数,包括目标的距离、速度和角度等。下图显示了雷达系统的基本处理过程,包括发射机、天线、接收机、显示器等部分。



雷达系统的处理过程


雷达发射机产生信号,放大后通过天线以电磁波的形式辐射出去,遇到物体反射的回波被天线接收,雷达想要探测的物体称为“目标”,而将其他物体的回波称为“杂波”。

多张动图详解雷达测距相关知识点

天线接收到的信号经过放大并进行信号处理,获得目标信息后由屏幕显示出目标的距离、速度和方向等多维度的信息。


距离探测


多张动图详解雷达测距相关知识点

由于电磁波的速度恒定为c=3*10^8m/s,那么若能测量出接收目标回波时刻相对于发射时刻的时间差t,那么就可以通过R=ct/2来计算目标距离。

脉冲宽度与最小探测距离

多张动图详解雷达测距相关知识点

对于单站脉冲体制的雷达,由于在发射信号时并不接收目标回波,因此存在一定测距的盲区,也就是雷达有最小探测距离。

多张动图详解雷达测距相关知识点

距离盲区与发射的脉冲宽度相关,对于脉冲宽度1us对应150m的距离盲区,对于稍大脉宽的信号将有太大的距离盲区,例如100us的脉宽就有15km距离盲区。当然,采用收发分置或者连续波雷达将会解决距离盲区的问题,但会带来例如隔离等其他问题。


PRF与最大不模糊距离

脉冲重复频率(PRF)是脉冲重复间隔(PRT)的倒数,PRT=1/PRF。它将直接影响最大不模糊距离,也就是目标的回波在当前PRF即可返回。如果目标的雷达回波信号在下一个或下几个脉冲回波中才回来,那么就存在距离模糊。

多张动图详解雷达测距相关知识点

我们可以通过参差PRF来解决,根据回波在不同PRF脉冲中位置的不稳定性来解模糊。点此查看: 解距离模糊的方法

多张动图详解雷达测距相关知识点

当然,对于相控阵雷达,通过灵活的波束指向控制以不接收先前脉冲的回波也可以解决距离模糊的问题。

占空比

多张动图详解雷达测距相关知识点

如上图,占空比是脉冲宽度与脉冲重复间隔(周期)的比值,等于脉冲发射的平均功率与脉冲峰值功率的比值。

多张动图详解雷达测距相关知识点

从雷达方程可以看出雷达最大的探测距离是与发射机的输出功率直接相关的,最大发射功率通常是受限的,但是可以通过提高占空比来增加平均功率,从而增加探测距离。从上图中列出的关系,我们发现可以增加脉宽和减少脉冲重复间隔时间来提高占空比。

脉冲串及其频谱

多张动图详解雷达测距相关知识点
从上图可以看出脉冲串的脉宽和周期及其频谱特性的关系。


距离分辨力


多张动图详解雷达测距相关知识点 多张动图详解雷达测距相关知识点 多张动图详解雷达测距相关知识点
实际的距离分辨力很复杂,为了全面考虑距离自相关函数主峰、旁瓣对分辨能力的影响,Woodward定义了一个反映分辨特性的参数:时延分辨常数,它与信号的有效带宽成反比。

多张动图详解雷达测距相关知识点

时延分辨常数是将相应主峰、旁瓣或类似噪声基地的全部能量计算在一起,除以主峰最高点功率所得的时间宽度。时延分辨常数越小,距离自相关函数的主峰窄、旁瓣或基底小,对分辨目标是有利的。


测距精度


首先要知道测距精度和距离分辨力是不同的概念。我们知道通过测量雷达回波的时延来测量目标的距离,但是系统对于时延的测量会有误差,这个误差的大小就是精度问题。

距离分辨率是雷达能区分二个目标的最小距离,二个目标相距小于它,雷达就认为是一个目标了。而测距精度则表示对某一个目标距离测量的精确性问题,它与信噪比和信号均方根带宽有关。

多张动图详解雷达测距相关知识点


脉冲压缩技术


脉冲压缩技术是匹配滤波理论和相关接收理论的一个很好的实际应用。它的提出很好的解决了这样的一个问题:

在发射端发射大时宽、带宽信号,以提高信号的速度测量精度和速度分辨力;而在接收端,将宽脉冲信号压缩为窄脉冲,以提高雷达对目标的距离分辨精度和距离分辨力;

多张动图详解雷达测距相关知识点 多张动图详解雷达测距相关知识点 多张动图详解雷达测距相关知识点

脉冲压缩雷达发射宽脉冲信号,接收和处理回波后输出窄脉冲的雷达,优点是能获得大的作用距离和很高的距离分辨力。

来源:雷达通信电子战


免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

21ic电子网

扫描二维码,关注更多精彩内容

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭