当前位置:首页 > > 小麦大叔
[导读]前面的话 本文介绍如何在matlab的simulink中嵌入C语言进行多输入多输出的仿真;这样暂时脱离硬件平台的问题,快速验证算法的可行性,从而提高效率,总体来说,simulink挺香的,不过由于不可抗拒因素,在一些高校强行被ban,非常可惜,但是我相信我们最终会拥有比matlab更强大的软件。

前面的话

本文介绍如何在matlab的simulink中嵌入C语言进行多输入多输出的仿真;这样暂时脱离硬件平台的问题,快速验证算法的可行性,从而提高效率,总体来说,simulink挺香的,不过由于不可抗拒因素,在一些高校强行被ban,非常可惜,但是我相信我们最终会拥有比matlab更强大的软件。

目录

  • 1 s-function

  • 2 具体设置

    • 2.1 输入输出

    • 2.2 构建 S-Function

  • 3 源码分析

  • 4 相关测试

  • 5 总结

1 s-function

S-function模块,位于Simulink/User-Defined Functions模块库中,它可以很方便的调用matlab脚本,即.m为后缀的文件,也可以调用c文件,进行多输入多输出(输入多个参数,返回多个参数),即MIMO的系统;

那么就需要LEVEL-2的s-function,因此这里需要使用S-Function Builder来自定义需要输入的参数和输出的参数;

S-Function Builder

2 具体设置

首先拖拽S-Function Builder到仿真文件中,并双击打开,可以看到具体的属性如下图所示;

属性

一般初级的使用,这里有四个地方需要注意,已经在上图中标注出来;

  1. S-Function文件名,最终构建成功会生成相应名称的 C文件;
  2. 输入输出的设置,根据需求设置 S-Function的入口参数,和返回参数,后面会详细解释;
  3. 完成设置之后需要进行构建,生成 C文件;
  4. 对相应文件进行修改,最终进行编译;
  5. 如果编译成功的话,C程序就已经成功嵌入了,下面可以进行 simulink仿真了;

后面将结合一个例子进行分析;

2.1 输入输出

首先设置文件名,本文设置为sfun_myc

然后在输入和输出选项下有相关端口的属性选项,具体如下;

  • Port name:端口名称,用户自己填写;
  • Dimensions:数据的维度,这里有两种选项,分别是 1-D2-D;如果是 1-D则表示输入 向量2-D则表示输入为矩阵;
  • Rows:输入数据的行数;
  • Columns:输入数据的列数;
  • Complexity:输入的数据是实数还是复数,这里有 realcomplex这两个选项;

2.1.1 添加相应的输入信号

如下图所示;点击图标①,在Input ports的选项下,添加了u0u1u2t,这四个输入信号的添加;

输入信号

2.1.2 添加相应的输出信号

输出具体如下图所示;

输出信号

2.2 构建 S-Function

设置成功之后,具体信息如下图所示;

文件列表

模块图标如下图所示;从上面两图可以看出,已经设置完成,点击Build生成S-Function对应的C程序,包括;

  • sfun_myc.c;在这文件中也可以进行对输出的修改;
  • sfun_myc_wrapper.c;主要修改这个文件,下面具体再分析;

文件列表如下图所示;

文件列表

3 源码分析

3.1 sfun_myc.c

sfun_myc.c是软件自动生成的文件,源码相对较长,占较大篇幅,暂时不贴,主要分析其中几个主要的函数;
mdlOutputs函数会每过一个采样点(sample time)就被调用一次,在这里以及传入了我们之前定义好的四个参数,以及需要输出的三个参数;并且最终调用sfun_myc_Outputs_wrapper函数来处理输入和输出,具体如下所示;

static void mdlOutputs(SimStruct *S, int_T tid)
{
    const real_T   *u0  = (const real_T*) ssGetInputPortSignal(S,0);
    const real_T   *u1  = (const real_T*) ssGetInputPortSignal(S,1);
    const real_T   *u2  = (const real_T*) ssGetInputPortSignal(S,2);
    const real_T   *t  = (const real_T*) ssGetInputPortSignal(S,3);
    real_T        *y0  = (real_T *)ssGetOutputPortRealSignal(S,0);
    real_T        *y1  = (real_T *)ssGetOutputPortRealSignal(S,1);
    real_T        *y2  = (real_T *)ssGetOutputPortRealSignal(S,2);
    
    sfun_myc_Outputs_wrapper(u0, u1, u2, t, y0, y1, y2);
}

3.2 sfun_myc_wrapper.c

主要的逻辑是在这个函数中进行编写;源码太长,占较大篇幅,暂时不贴,主要分析其中几个主要的函数;

/* This sample sets the output equal to the input
      y0[0] = u0[0]; 
 For complex signals use: y0[0].re = u0[0].re; 
      y0[0].im = u0[0].im;
      y1[0].re = u1[0].re;
      y1[0].im = u1[0].im;
*/

上面的代码可以看到,u0为输入,y0y1为输出;

sfun_myc_Outputs_wrapper函数中进行修改,就可以得到:

这里用梯形速度曲线进行测试,具体如下;


/*
 * Output functions
 *
 */

void sfun_myc_Outputs_wrapper(const real_T *u0,
   const real_T *u1,
   const real_T *u2,
   const real_T *t,
   real_T *y0,
   real_T *y1,
   real_T *y2)

{
/* %%%-SFUNWIZ_wrapper_Outputs_Changes_BEGIN --- EDIT HERE TO _END */
/* This sample sets the output equal to the input
      y0[0] = u0[0]; 
 For complex signals use: y0[0].re = u0[0].re; 
      y0[0].im = u0[0].im;
      y1[0].re = u1[0].re;
      y1[0].im = u1[0].im;
*/

/* %%%-SFUNWIZ_wrapper_Outputs_Changes_END --- EDIT HERE TO _BEGIN */
    int Am = u0[0];
    int Vm = u1[0];
    int Pf = u2[0];
    int T = t[0];
    
    int Ta = Vm/Am;
    int Tm = (Pf - Am*Ta*Ta)/Vm;
    int Tf = 2*Ta+Tm;
    printf("%d\r\n",Tf);    
    //梯形
    if(Tm>0){
        if(T <= Ta){
            y0[0] = 0.5*Am*T*T;
            y1[0] = Am*T;
            y2[0] = Am;
        }else if(T<=(Ta+Tm)){
            y0[0] = 0.5*Am*Ta*Ta + Vm*(T-Ta);
            y1[0] = Vm;
            y2[0] = 0;
        }else if(T<=(Ta+Tm+Ta)){
            y0[0] = 0.5*Am*Ta*Ta + Vm*Tm + 0.5*Am*(T-Ta-Tm)*(T-Ta-Tm);
            y1[0] = Vm-Am*(T-Ta-Tm);
            y2[0] = -Am;
        }
    }else{
    //三角形
        Ta = sqrt(Pf/Am);
        if(T            y0[0] = 0.5*Am*T*T;
            y1[0] = Am*T;
            y2[0] = Am;
        }else{
            y0[0] = 0.5*Am*Ta*Ta + 0.5*Am*(T-Ta)*(T-Ta);
            y1[0] = Am*Ta - Am*(T-Ta);
            y2[0] = -Am;
        }
    }
}

3.2 编译程序

编辑好相应的函数就可以开始编译程序;在matlab终端输入以下指令;

mex sfun_myc.c sfun_myc_wrapper.c

0 warning 0 errors

如果出现以下提示:错误使用 mex 未找到支持的编译器或 SDK。您可以安装免费提供的 MinGW-w64 C/C++ 编译器;请参阅安装 MinGW-w64 编译器。如需更多选项,请参阅http://www.mathworks.com/support/compilers/R2015b/win64.html。===

则需要先根据提示安装相应的编译器。

4 相关测试

仿真的框图如下所示;

仿真图

写的是一个梯形速度曲线规划仿真算法,,结果符合预期,开心。

输出结果

5 总结

本文总结了在matlab的simulink中调用C语言进行仿真,但是还有很多问题没有考虑在内,需要读者进行举一反三,如果有别的问题也可以进行在文章下方进行评论。

笔者能力和水平有限,文中难免有错误和纰漏之处,请大佬们不吝赐教;创作不易,如果本文帮到了您;如果本文帮到了您,请帮忙点个赞 ;

—— The End —

推荐好文   点击蓝色字体即可跳转
 写给大忙人看的上帝公式!!!
 当心!别再被大小端的问题坑了
 PID微分器与滤波器的爱恨情仇
 原来SPI并没有我想的那么简单
 对不起!我还是坚持把I2C肝完了
 三面大疆惨败,因为不懂PID的积分抗饱和

原创不易,欢迎转发、留言、点赞、分享给你的朋友,感谢您的支持!


长按识别二维码关注获取更多内容




免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭