当前位置:首页 > 半导体 > 美光
[导读]新款 3D NAND 产品将进一步提升移动设备、汽车、客户端 (PC) 和数据中心等应用的存储能力

2020 年 11 月 12日,中国上海 — 内存和存储解决方案领先供应商 Micron Technology Inc.(美光科技股份有限公司)今日宣布已批量出货全球首款 176 层 3D NAND 闪存,一举刷新行业纪录,实现闪存产品密度和性能上的重大提升。美光全新的 176 层工艺与先进架构共同促成了此项重大突破,使数据中心、智能边缘平台和移动设备等一系列存储应用得以受益,实现性能上的巨大提升。

美光技术与产品执行副总裁 Scott DeBoer 表示:“美光的 176 层 NAND 树立了闪存行业的新标杆,与最接近的竞争对手同类产品相比,堆叠层数多出近 40%。结合美光的 CMOS 阵列下 (CMOS-under-array) 架构,该项技术帮助美光继续在成本方面保持行业领先优势。”

该款 176 层 NAND 产品采用美光第五代 3D NAND 技术和第二代替换栅极架构,是市场上最先进的 NAND 技术节点。与美光的上一代大容量 3D NAND 产品相比,176 层 NAND 将数据读取和写入延迟缩短了 35% 以上,极大地提高了应用的性能。美光的 176 层 NAND 采用紧凑型设计,裸片尺寸比市场最接近同类产品缩小近 30%,是满足小尺寸应用需求的理想解决方案。

采用突破性技术,发挥闪存巨大潜力,服务多元化市场

美光执行副总裁兼首席业务官 Sumit Sadana 表示:“采用美光的 176 层 NAND 后,我们的客户将实现突破性的产品创新。我们将在广泛的产品组合中部署这项技术,在 NAND 应用的各个领域中实现价值,重点把握 5G、人工智能、云和智能边缘领域的增长机会。”

美光 176 层 NAND 拥有全面设计和行业首屈一指的密度,应用广泛,在多个行业将不可或缺,包括移动设备存储、自动驾驶系统、车载信息娱乐以及客户端 (PC) 和数据中心的固态硬盘 (SSD)。

美光 176 层 NAND 的服务质量 (QoS) 进一步提升, 这对数据中心 SSD 的设计标准而言至关重要——它能更快应对数据密集型环境和工作负载,例如数据湖、人工智能 (AI) 引擎和大数据分析。对于 5G 智能手机而言,提升的 QoS 意味着多个应用程序启动和切换更加快速,带来流畅、反应迅速的移动体验,真正实现多任务处理和 5G 低延迟网络的充分利用。

在开放式 NAND 闪存接口 (ONFI) 总线上,美光第五代 3D NAND 也实现了行业领先的 1600 MT/秒最大数据传输速率,比此前提升了 33%。更快的 ONFI 速度意味着系统启动更迅速、应用程序性能更出众。在汽车应用中,这种速度将让车载系统在发动机启动后近乎即时地响应,从而为用户带来更好的体验。

美光正与业界开发者合作,将新产品快速应用到解决方案中。为了简化固件开发,美光 176 层 NAND 提供单流程 (single-pass) 写算法,使集成更为便捷,从而加快方案上市时间。

创新架构,实现出众的密度和成本优势

随着摩尔定律逐渐逼近极限,美光在 3D NAND 领域的创新对确保行业满足数据增长需求至关重要。为了实现这一目标,美光开创性地结合了堆栈式替换栅极架构、创新的电荷捕获技术和 CMOS 阵列下 (CuA)技术。美光的 3D NAND 专家团队利用专有的 CuA 技术取得了大幅进步,该技术在芯片的逻辑器件上构建了多层堆栈,将更多内存集成封装在更紧凑的空间中,极大缩小了 176 层 NAND 的裸片尺寸,提升了单片晶圆的存储容量。

同时,美光还将 NAND 单元技术从传统的浮动栅极过渡到电荷捕获,提高了未来 NAND 的可扩展性和性能。除了电荷捕获技术,美光还采用了替换栅极架构,利用其中的高导电性金属字线取代硅层,实现了出类拔萃的 3D NAND 性能。采用该技术后,美光将大幅度降低成本,继续领跑业界。

通过采用这些先进技术,美光提升了产品耐用度,这将使各种写入密集型应用特别受益,例如航空航天领域的黑匣子以及视频监控录像等。在移动设备存储中,176 层 NAND 的替换栅极架构可将混合工作负载性能提高 15%,从而支持超快速边缘计算、增强型人工智能推理以及图像显示细腻的实时多人游戏。

供应情况

美光 176 层三层单元 (TLC) 3D NAND 已在美光新加坡晶圆制造工厂量产并向客户交付,包括通过其英睿达 (Crucial) 消费级 SSD 产品线。美光将在 2021 日历年推出基于该技术的更多新产品。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭