当前位置:首页 > > 21ic电子网
[导读]大多数ADC、DAC和其他混合信号器件数据手册是针对单个PCB讨论接地,通常是制造商自己的评估板。将这些原理应用于多卡或多ADC/DAC系统时,就会让人感觉困惑茫然。通常建议将PCB接地层分为模拟层和数字层,并将转换器的 AGND 和 DGND 引脚连接在一起,并且在同一点连接模拟接地层和数字接地层

混合信号接地的困惑根源


大多数ADC、DAC和其他混合信号器件数据手册是针对单个PCB讨论接地,通常是制造商自己的评估板。将这些原理应用于多卡或多ADC/DAC系统时,就会让人感觉困惑茫然。通常建议将PCB接地层分为模拟层和数字层,并将转换器的 AGND 和 DGND 引脚连接在一起,并且在同一点连接模拟接地层和数字接地层,如图 1 所示。

关于混合信号接地,有几个重要的知识必须知道!
图 1. 混合信号 IC 接地:单个 PCB(典型评估/测试板)

这样就基本在混合信号器件上产生了系统“星型”接地。所有高噪声数字电流通过数字电源流入数字接地层,再返回数字电源;与电路板敏感的模拟部分隔离开。系统星型接地结构出现在混合信号器件中模拟和数字接地层连接在一起的位置。

该方法一般用于具有单个 PCB 和单个 ADC/DAC 的简单系统,不适合多卡混合信号系统。在不同PCB(甚至在相同 PCB 上)上具有数个ADC 或 DAC的系统中,模拟和数字接地层在多个点连接,使得建立接地环路成为可能,而单点“星型”接地系统则不可能。鉴于以上原因,此接地方法不适用于多卡系统,上述方法应当用于具有低数字电流的混合信号IC。

具有低数字电流的混合信号IC的接地和去耦


敏感的模拟元件,例如放大器和基准电压源,必须参考和去耦至模拟接地层。具有低数字电流的 ADC 和 DAC(和其他混合信号 IC)一般应视为模拟元件,同样接地并去耦至模拟接地层。乍看之下,这一要求似乎有些矛盾,因为转换器具有模拟和数字接口,且通常有指定为模拟接地(AGND)和数字接地(DGND)的引脚。图 2 有助于解释这一两难问题。

关于混合信号接地,有几个重要的知识必须知道!
图 2. 具有低内部数字电流的混合信号 IC 的正确接地

同时具有模拟和数字电路的 IC(例如 ADC 或 DAC)内部,接地通常保持独立,以免将数字信号耦合至模拟电路内。 图 2 显示了一个简单的转换器模型。将芯片焊盘连接到封装引脚难免产生线焊电感和电阻,IC 设计人员对此是无能为力的,心中清楚即可。快速变化的数字电流在 B 点产生电压,且必然会通过杂散电容 CSTRAY耦合至模拟电路的 A 点。此外,IC 封装的每对相邻引脚间约有 0.2 pF的杂散电容,同样无法避免!IC 设计人员的任务是排除此影响让芯片正常工作。

不过,为了防止进一步耦合, AGND 和 DGND 应通过最短的引线在外部连在一起,并接到模拟接地层。 DGND 连接内的任何额外阻抗将在 B点产生更多数字噪声;继而使更多数字噪声通过杂散电容耦合至模拟电路。 请注意,将 DGND 连接到数字接地层会在 AGND 和 DGND 引脚两端施加VNOISE,带来严重问题!

“DGND”名称表示此引脚连接到 IC 的数字地,但并不意味着此引脚必须连接到系统的数字地。可以更准确地将其称为 IC 的内部“数字回路”。

这种安排确实可能给模拟接地层带来少量数字噪声,但这些电流非常小,只要确保转换器输出不会驱动较大扇出(通常不会如此设计)就能降至最低。将转换器数字端口上的扇出降至最低(也意味着电流更低),还能让转换器逻辑转换波形少受振铃影响,尽可能减少数字开关电流,从而减少至转换器模拟端口的耦合。通过插入小型有损铁氧体磁珠,如图 2 所示,逻辑电源引脚 pin (VD)可进一步与模拟电源隔离。转换器的内部瞬态数字电流将在小环路内流动,从 VD经去耦电容到达 DGND (此路径用图中红线表示)。因此瞬态数字电流不会出现在外部模拟接地层上,而是局限于环路内。VD 引脚去耦电容应尽可能靠近转换器安装,以便将寄生电感降至最低。去耦电容应为低电感陶瓷型,通常介于 0.01 μF (10 nF)和 0.1 μF (100 nF) 之间。

再强调一次,没有任何一种接地方案适用于所有应用。但是,通过了解各个选项和提前进行规则,可以最大程度地减少问题

来源:亚德诺半导体(ADI)


版权归原作者所有,如有侵权,请联系删除。

关于混合信号接地,有几个重要的知识必须知道!

免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

21ic电子网

扫描二维码,关注更多精彩内容

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭