当前位置:首页 > > strongerHuang
[导读]为什么我们代码将浮点数、整数进行强制转换,或打印输出时会出精度损失,或出错的情况? 想要搞明白这个问题,就需要了解一下整数、浮点数的存储规则。

关注+星标公众,不错过精彩内容

作者 | 夜风

编排 | strongerHuang


为什么我们代码将浮点数、整数进行强制转换,或打印输出时会出精度损失,或出错的情况?

想要搞明白这个问题,就需要了解一下整数、浮点数的存储规则。

嵌入式专栏

1

浮点数存储规则

根据国际标准IEEE(电气和电子工程协会)规定,任何一个浮点数NUM的二进制数可以写为:


NUM = (-1) ^ S * M * 2 ^ E ; (S表示符号,E表示阶乘,M表示有效数字)

①当S为0时,表示一个正数;当S为1时,表示一个负数;

②M表示有效数字,1<= M <2;

③2^E表示指数
比如十进制的3.0,二进制就是0011.0 就可以写成(-1)^ 0 * 1.1 * 2 ^ 1

再比如十进制的-3.0,二进制就是-0011.0 就可以写成(-1)^ 1 * 1.1 * 2 ^ 1

而规定float类型有一个符号位(S),有8个指数位(E),和23个有效数字位(M)

double类型有一个符号位(S),有11个指数位(E),和52个有效数字位(M)

以float类型为例:

IEEE对于(有效数字)M和(指数)E有特殊的规定(以float为例): 
1. 因为M的值一定是1<= M <2,所以它绝对可以写成1.xxxxxxx的形式,所以规定M在存储时舍去第一个1,只存储小数点之后的数字。
这样做节省了空间,以float类型为例,就可以保存23位小数信息,加上舍去的1就可以用23位来表示24个有效的信息。

2. 对于E(指数)E是一个无符号整数所以E的取值范围为(0~ 255),但是在计数中指数是可以为负的,所以规定在存入E时,在它原本的值上加上中间数(127),在使用时减去中间数(127),这样E的真正取值范围就成了(-127~128)。

对于E还分为三种情况:
①E不全为0,不全为1:
这时就用正常的计算规则,E的真实值就是E的字面值减去127(中间值),M的值要加上最前面的省去的1。
②E全为0
这时指数E等于1-127为真实值,M不在加上舍去的1,而是还原为0.xxxxxxxx小数。这样为了表示0,和一些很小的整数。
所以在进行浮点数与0的比较时,要注意。
③E全为1
当M全为0时,表示±无穷大(取决于符号位);当M不全为1时,表示这数不是一个数(NaN)

嵌入式专栏

2

测试
代码如下:
void test(void){ float m=134.375; char *a=(char*)&m;
printf("0x%p:%d\n",a,*a); printf("0x%p:%d\n",a+1,*(a+1) ); printf("0x%p:%d\n",a+2,*(a+2) ); printf("0x%p:%d\n",a+3,*(a+3) );}

代码输出结果:


具体的计算过程如下:


嵌入式专栏

3

精度损失

我们可以把十进制的小数部分乘以2,取整数部分作为二进制的一位,剩余小数继续乘以2,直至不存在剩余小数为止。

例如0.2可以转换为:
0.2 x 2 = 0.4 0
0.4 x 2 = 0.8 0
0.8 x 2 = 1.6 1
0.6 x 2 = 1.2 1
0.2 x 2 = 0.4 0
0.4 x 2 = 0.8 0
0.8 x 2 = 1.6 1

即:.0011001…
它是一个无限循环的二进制数,这就是为什么十进制小数转换成二进制小数的时候为什么会出现精度损失的情况。

前不久给大家分享的《单精度、双精度、多精度和混合精度计算的区别是什么?》可能大家不是很明白,今天看了浮点数的存储规则,你明白了吗?

嵌入式专栏

4

整数的存储规则

理解了浮点数的存储规则,再理解整数就很简单了。


整数在内存中都是以补码的形式进行存储,整数有正负之分。当需存储有符号数时,用第一位来表示正(0)和负(1)。


正数的反码和补码还是它本身,下面主要讨论下负数的反码和补码。反码是其原码除去最高符号位后其余位按位取反,补码是其反码在加上1 。


测试代码:
void test(void){ int8_t n=-123; uint8_t *p=(uint8_t *)&n;
printf("%d\n",n); printf("%d\n",*p); }

输出结果:

计算过程如下:


素材来源:
https://blog.csdn.net/u014470361/article/details/79820892

免责声明:本文来源网络,版权归原作者所有。如涉及作品版权问题,请与我联系删除。

------------ END ------------


推荐阅读:

精选汇总 | 专栏 | 目录 | 搜索

精选汇总 | ARM、Cortex-M

精选汇总 | ST工具、下载编程工具


关注 微信公众号『嵌入式专栏』,底部菜单查看更多内容,回复“加群”按规则加入技术交流群。


点击“阅读原文”查看更多分享,欢迎点分享、收藏、点赞、在看。

免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭