当前位置:首页 > > 嵌入式微处理器
[导读]i2c的设备树和驱动是如何匹配以及何时调用probe的?

一、问题提出

i2c的设备树和驱动是如何匹配以及何时调用probe的?粉丝手里的I2C外设是ov5640,一个摄像头。

二、问题分析

设备树信息如下:

 ov5640: ov5640@3c {
  compatible = "ovti,ov5640"
  reg = <0x3c>;
  pinctrl-names = "default";
  pinctrl-0 = <&pinctrl_csi1
                             &csi_pwn_rst>;
  clocks = <&clks IMX6UL_CLK_CSI>;
  clock-names = "csi_mclk";
  pwn-gpios = <&gpio1 4 1>;
  rst-gpios = <&gpio1 2 0>;
  csi_id = <0>;
  mclk = <24000000>;
  mclk_source = <0>;
  status = "okay";
  port {
   ov5640_ep: endpoint {
    remote-endpoint = <&csi1_ep>;
   };
  };
 };

驱动最重要的结构体如下:

ov5640_i2c_driver

要搞懂这个问题,我们需要有一些基础知识:

1.内核如何维护i2c总线

Linux内核维护很多总线,platform、usb、i2c、spi、pci等等,这个总线的架构在内核中都支持的很完善,内核通过以下结构体来维护总线:

struct bus_type {
 const char  *name;
 const char  *dev_name;
 struct device  *dev_root;
 struct device_attribute *dev_attrs; /* use dev_groups instead */
 const struct attribute_group **bus_groups;
 const struct attribute_group **dev_groups;
 const struct attribute_group **drv_groups;

 int (*match)(struct device *dev, struct device_driver *drv);
 int (*uevent)(struct device *dev, struct kobj_uevent_env *env);
 int (*probe)(struct device *dev);
 int (*remove)(struct device *dev);
 void (*shutdown)(struct device *dev);

 int (*online)(struct device *dev);
 int (*offline)(struct device *dev);

 int (*suspend)(struct device *dev, pm_message_t state);
 int (*resume)(struct device *dev);

 const struct dev_pm_ops *pm;

 struct iommu_ops *iommu_ops;

 struct subsys_private *p;
 struct lock_class_key lock_key;
};

i2c对应总线结构体变量为i2c_bus_type,定义如下:

drivers/i2c/I2c-core.c 
struct bus_type i2c_bus_type = {
 .name  = "i2c",
 .match  = i2c_device_match,
 .probe  = i2c_device_probe,
 .remove  = i2c_device_remove,
 .shutdown = i2c_device_shutdown,
 .pm  = &i2c_device_pm_ops,
};

其中:

  1. i2c_device_match(),匹配总线维护的驱动链表和设备信息链表,如果其中名字完全相同,则返回true,否则false;
  2. i2c_device_probe(),当我们注册一个i2c_drive或者i2c_client结构体时,会从对应的链表中查找节点,并通过i2c_device_match函数比较,如果匹配成功,则调用i2c_drive中定义的probe函数,即ov5640的ov5640_probe()函数;
  3. remove:如果卸载i2c_drive或者i2c_client结构体,会调用该函数卸载对应的资源;
  4. shutdown、pm是电源管理的接口,在此不讨论。

该结构体变量在函数i2c_init()中初始化:

static int __init i2c_init(void)
{
 …………
 retval = bus_register(&i2c_bus_type);
 …………
}

i2c架构是通用架构,可支持多种不同的i2c控制器驱动。

2. i2c架构如何如何管理硬件信息和驱动?

不论哪一种总线,一定会维护两个链表,一个是驱动链表,一个是硬件信息链表。链表如下:

i2c总线的两个节点信息如下:

「struct i2c_driver」

struct i2c_driver {
 unsigned int class;

 /* Notifies the driver that a new bus has appeared. You should avoid
  * using this, it will be removed in a near future.
  */

 int (*attach_adapter)(struct i2c_adapter *) __deprecated;

 /* Standard driver model interfaces */
 int (*probe)(struct i2c_client *, const struct i2c_device_id *);
 int (*remove)(struct i2c_client *);

 /* driver model interfaces that don't relate to enumeration  */
 void (*shutdown)(struct i2c_client *);
 int (*suspend)(struct i2c_client *, pm_message_t mesg);
 int (*resume)(struct i2c_client *);

 /* Alert callback, for example for the SMBus alert protocol.
  * The format and meaning of the data value depends on the protocol.
  * For the SMBus alert protocol, there is a single bit of data passed
  * as the alert response's low bit ("event flag").
  */

 void (*alert)(struct i2c_client *, unsigned int data);

 /* a ioctl like command that can be used to perform specific functions
  * with the device.
  */

 int (*command)(struct i2c_client *client, unsigned int cmd, void *arg);

 struct device_driver driver;
 const struct i2c_device_id *id_table;

 /* Device detection callback for automatic device creation */
 int (*detect)(struct i2c_client *, struct i2c_board_info *);
 const unsigned short *address_list;
 struct list_head clients;
};
  1. 当总线匹配驱动和硬件信息成功后就会调用其中的probe()函数;
  2. struct device_driver driver,内核中注册的驱动模块,必须包含该类型的结构体成员。

「struct i2c_client」

成员 含义
unsigned short flags 从设备地址长度
unsigned short addr 从设备地址
char name[I2C_NAME_SIZE] 从设备地址名称
struct i2c_adapter *adapter 从设备地址对应的控制器驱动地址
struct device dev 注册到内核的每一个设备模块都需要先定义一个该结构体变量,对应struct device_driver driver
int irq 从设备地址往往会有一根中断线连接到SOC的中断控制器
struct list_head detected 链表

3. i2c_driver和i2c_client

1) i2c_driver如何注册

i2c_driver结构需要我们自己定义,然后通过函数i2c_register_driver()注册,将该结构体变量注册到i2c_driver链表,同时从i2c_client链表中查找是否有匹配的节点:

设备树情况下,会比较i2c_drive->driver->of_match_table->compatible和i2c_client->name,对应例子中的of_ov5640_id:

非设备树比较i2c_drive->id_table->name和i2c_client->name,对应例子中的ov5640_id:

代码中并没有直接调用函数i2c_register_driver()注册,而是使用了下面的这个宏:该宏定义如下:

include/linux/I2c.h

该宏其实自动帮我生成了insmod和rmmod会用到宏module_init和module_exit,以及注册和注销i2c_driver结构体的代码。

如果看不明白宏,可以编写测试文件:test.c

#define module_i2c_driver(__i2c_driver) \
 module_driver(__i2c_driver, i2c_add_driver, \
   i2c_del_driver)

   
#define module_driver(__driver, __register, __unregister, ...) \
static int __init __driver##_init(void) \
{ \
 return __register(&(__driver) , ##__VA_ARGS__); \
} \
module_init(__driver##_init); \
static void __exit __driver##_exit(void) \
{ \
 __unregister(&(__driver) , ##__VA_ARGS__); \
} \
module_exit(__driver##_exit);


module_i2c_drive(ov5640_i2c_driver);

预编译:

gcc -E test.c

得到宏替换后的结果:

static int __init ov5640_i2c_driver_init(void) 
{
  return i2c_add_driver(&(ov5640_i2c_driver)); 

module_init(ov5640_i2c_driver_init); 
static void __exit ov5640_i2c_driver_exit(void) 
{
 i2c_del_driver(&(ov5640_i2c_driver)); 

module_exit(ov5640_i2c_driver_exit);;

内核中有大量的高效简洁的宏定义,Linux内核就是个宝库,里面有大量的优秀的代码,想提高自己的编程能力,就一定要多看代码,代码读百遍,其义自见。

一口君认为,如果Linux代码都看不太明白,就不要自称精通C语言,充其量是会用C语言。

2)i2c_client如何生成(只讨论有设备树的情况)

在有设备树的情况下,i2c_client的生成是要在控制器驱动adapter注册情况下从设备树中枚举出来的。

i2c控制器有很多种,不同的厂家都会设计自己特有的i2c控制器,但是不论哪一个控制器,最终都会调用 i2c_register_adapter()注册控制器驱动。

i2c_client生成流程如下:

i2c_client

三、 i2c的设备树和驱动是如何匹配以及何时调用probe?

1.  i2c的设备树和驱动是如何match,何时调用probe?

从第二章第3节可知,驱动程序中 module_i2c_drive()这个宏其实最终是调用 i2c_add_driver(&(ov5640_i2c_driver));注册ov5640_i2c_driver结构体;当我们insmod加载驱动模块文件时,会调用i2c_add_driver()。

该函数定义如下:

#define i2c_add_driver(driver) \
 i2c_register_driver(THIS_MODULE, driver)

下面我们来追踪i2c_register_driver()这个函数:

其中drv->bus就是我们之前所说的i2c_bus_type,上图中,分别调用了.match、.probe:

struct bus_type i2c_bus_type = {
 .name  = "i2c",
 .match  = i2c_device_match,
 .probe  = i2c_device_probe,
 .remove  = i2c_device_remove,
 .shutdown = i2c_device_shutdown,
 .pm  = &i2c_device_pm_ops,
};

下面我们来追一追这两个函数

2. i2c_device_match()

i2c_device_match

3. i2c_device_probe

如下图所示,通过driver->probe()调用到我们定义的struct i2c_driver ov5640_i2c_driver结构体变量中的ov5640_probe()函数:

i2c_device_probe

【注意】 内核代码中大量使用到driver = to_i2c_driver(dev->driver);通过通用的结构体变量成员struct device_driver *driver来查找自己注册的xx_driver地址。

END

来源:一口Linux,作者:土豆居士

版权归原作者所有,如有侵权,请联系删除。

推荐阅读

飞机上一般是什么操作系统?

高速CAN、容错CAN、LIN总线有什么区别?

大佬终于把鸿蒙OS讲明白了,收藏了!

免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

嵌入式ARM

扫描二维码,关注更多精彩内容

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭