当前位置:首页 > > 技术解析
[导读]为增进大家对ADC的认识,本文将对如何提高ADC性能提出一些建议。

ADC中文称为数模转换器,在诸多电子设备中都存在ADC身影。前文中,小编对ADC外围电路设计有所介绍。为增进大家对ADC的认识,本文将对如何提高ADC性能提出一些建议。如果你对ADC,或者对本文内容具有兴趣,不妨继续往下阅读哦。

虽然ADC看起来非常简单,但它们必须正确使用才能获得最优的性能。ADC具有与简单模拟放大器相同的性能限制,比如有限增益、偏置电压、共模输入电压限制和谐波失真等。ADC的采样特性需要我们更多地考虑时钟抖动和混叠。以下一些指南有助于工程师在设计中充分发挥ADC的全部性能。

一、模拟输入

要认真对待ADC的模拟输入信号,尽量使它保持干净,“无用输入”通常会导致“数字化的无用输出”。模拟信号路径应远离任何快速开关的数字信号线,以防止噪声从这些数字信号线耦合进模拟路径。

虽然简化框图给出的是单端模拟输入,但在高性能ADC上经常使用差分模拟输入。差分驱动ADC可以提供更强的共模噪声抑制性能,由于有更小的片上信号摆幅,因此一般也能获得更好的交流性能。差分驱动一般使用差分放大器或变压器实现。变压器可以提供比放大器更好的性能,因为有源放大器会带来影响总体性能的额外噪声源。但是,如果需要处理的信号含有直流成份,具有隔直流特性的变压器就不能用。在设计预驱动电路时必须考虑驱动放大器的噪声和线性性能。需要注意的是,因为高性能ADC通常有非常高的输入带宽,因此在ADC输入引脚处直接滤波可以减少混入基带的宽带噪声数量。

二、参考输入

参考输入应看作是另一个模拟输入,必须尽可能保持干净。参考电压(VREF)上的任何噪声与模拟信号上的噪声是没有区别的。一般ADC的数据手册上会规定要求的去耦电容。这些电容应放置在离ADC最近的地方。为了节省电路板面积,PCB设计师有时会将去耦电容放在PCB的背面,这种情况应尽可能避免,因为过孔的电感会降低高频时电容的去耦性能。VREF通常用来设置ADC的满刻度范围,因此减小VREF电压值会减小ADC的LSB值,使得ADC对系统噪声更加敏感(1V满刻度10位ADC的LSB值等于1V/210=1mV)。

图1:典型的模数转换器功能框图

三、时钟输入

根据具体的应用,数字时钟输入可能与模拟输入具有同等的重要性。ADC中有两大噪声源:一个是由输入信号的量化引起的(正比于ADC中的位数),另一个是由时钟抖动引起的(在错误时间点采样输入信号)。根据以下公式,在非过采样ADC应用中量化噪声将限制最大可能的信噪比(SNR)值。

其中,N为ADC的位数、SNR为信噪比。

从直观感觉这是有意义的:每增加一位,ADC编码的总数量就会增加一倍,量化不确定性可降低一半(6dB)。因此理论上一个10位ADC可以提供61.96dB的SNR。

用抖动等于8ps的采样时钟数字化70MHz的模拟信号,可以得到接近49dB SNR的有限抖动,相当于将10位ADC的性能降低到了约8位。时钟抖动必须小于2ps才能取得等效于10位ADC的SNR。还有许多影响SNR的二阶因素,但上述等式是非常好的一阶接近函数。差分时钟常用来减小抖动。

四、电源输入

大多数ADC有分离的电源输入,一个用于模拟电路,一个用于数字电路。推荐在尽量靠近ADC的位置使用足够多的去耦电容。尽量减少PCB的过孔数量,并减小从ADC电源引脚到去耦电容的走线长度,从而使ADC和电容之间的电感为最小。就像参考电压去耦一样,电路板设计师为了节省电路板面积有时会把去耦电容放在芯片下方PCB板的背面,基于同样的理由,这种情况也应避免。ADC数据手册一般会提供推荐的去耦方案。为了达到特定的性能,电源和地经常会采用专门的PCB层实现。

五、数字输出

ADC开关数字信号输出会产生瞬时噪声,并向后耦合到ADC中敏感的模拟电路部分,从而引发故障。缩短输出走线长度以减小ADC驱动的电容负载有助于减小这一影响,在ADC输出端放置串行电阻也可以降低输出电流尖峰。ADC数据手册通常对此也有一些设计建议。

以上便是此次小编带来的“ADC”相关内容,通过本文,希望大家对提高ADC性能的一些建议具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭