当前位置:首页 > > 技术解析
[导读]为增进大家对云存储的了解,本文将对云存储架构以及云存储系统的组成加以介绍。

不知不觉中,我们每天都在接触存储,由此可见存储的重要性。随着时代的改变,存储方式也在随之变化。目前,云存储是十分火热的存储方式之一。为增进大家对云存储的了解,本文将对云存储架构以及云存储系统的组成加以介绍。如果你对存储具有兴趣,不妨继续往下阅读哦。

一、云存储架构

云存储架构分为两类,一种是通过服务来架构,另一种是通过软件或硬件设备来架构。

传统的系统利用紧耦合对称架构,这种架构的设计旨在解决HPC(高性能计算、超级运算)问题,现在其正在向外扩展成为云存储从而满足快速呈现的市场需求。下一代架构已经采用了松弛耦合非对称架构,集中元数据和控制操作,这种架构并不非常适合高性能HPC,但是这种设计旨在解决云部署的大容量存储需求。各种架构的摘要信息如下:

1. 紧耦合对称(TCS)架构

构建TCS系统是为了解决单一文件性能所面临的挑战,这种挑战限制了传统NAS系统的发展。HPC系统所具有的优势迅速压倒了存储,因为它们需要的单一文件I/O操作要比单一设备的I/O操作多得多。业内对此的回应是创建利用TCS架构的产品,很多节点同时伴随着分布式锁管理(锁定文件不同部分的写操作)和缓存一致性功能。这种解决方案对于单文件吞吐量问题很有效,几个不同行业的很多HPC客户已经采用了这种解决方案。这种解决方案很先进,需要一定程度的技术经验才能安装和使用。

2. 松弛耦合非对称(LCA)架构

LCA系统采用不同的方法来向外扩展。它不是通过执行某个策略来使每个节点知道每个行动所执行的操作,而是利用一个数据路径之外的中央元数据控制服务器。集中控制提供了很多好处,允许进行新层次的扩展:

● 存储节点可以将重点放在提供读写服务的要求上,而不需要来自网络节点的确认信息。

● 节点可以利用不同的商品硬件CPU和存储配置,而且仍然在云存储中发挥作用。

● 用户可以通过利用硬件性能或虚拟化实例来调整云存储。

● 消除节点之间共享的大量状态开销也可以消除用户计算机互联的需要,如光纤通道或infiniband,从而进一步降低成本。

● 异构硬件的混合和匹配使用户能够在需要的时候在当前经济规模的基础上扩大存储,同时还能提供永久的数据可用性。

● 拥有集中元数据意味着,存储节点可以旋转地进行深层次应用程序归档,而且在控制节点上,元数据经常都是可用的。

二、云存储系统组成

1. 存储层

存储层是云存储最基础的部分。存储设备可以是FC光纤通道存储设备,可以是NAS和 iSCSI等IP存储设备,也可以是 SCSI或SAS等 DAS存储设备。云存储中的存储设备往往数量庞大且分布多不同地域。彼此之间通过广域网、互联网或者FC光纤通道网络连接在一起。

存储设备之上是一个统一存储设备管理系统,可以实现存储设备的逻辑虚拟化管理、多链路冗余管理,以及硬件设备的状态监控和故障维护。

2. 基础管理层

基础管理层是云存储最核心的部分,也是云存储中最难以实现的部分。基础管理层通过集群、分布式文件系统和网格计算等技术,实现云存储中多个存储设备之间的协同工作,使多个的存储设备可以对外提供同一种服务,并提供更大更强更好的数据访问性能。

CDN内容分发系统、数据加密技术保证云存储中的数据不会被未授权的用户所访问,同时,通过各种数据备份和容灾技术和措施可以保证云存储中的数据不会丢失,保证云存储自身的安全和稳定。

3. 应用接口层

应用接口层是云存储最灵活多变的部分。不同的云存储运营单位可以根据实际业务类型,开发不同的应用服务接口,提供不同的应用服务。比如视频监控应用平台、IPTV和视频点播应用平台、网络硬盘应用平台,远程数据备份应用平台等。

4. 访问层

任何一个授权用户都可以通过标准的公用应用接口来登录云存储系统,享受云存储服务。云存储运营单位不同,云存储提供的访问类型和访问手段也不同。

以上便是此次小编带来的“存储”相关内容,通过本文,希望大家对云存储架构和云存储系统的组成具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭