当前位置:首页 > > 嵌入式大杂烩
[导读]这篇文章讲解的知识点很小,但是在一些编程场合中非常适用,大家可以把这篇短文当做甜品来品味一下。



来源::IOT物联网小镇

作者:道哥

前言

这篇文章讲解的知识点很小,但是在一些编程场合中非常适用,大家可以把这篇短文当做甜品来品味一下。

地球人都知道,do-while语句是C/C++中的一个循环语句,特点是:

至少执行一次循环体;
在循环的尾部进行结束条件的判断。

其实do-while还可以用在其他一些场合中,非常巧妙的处理你的一些难题,比如:

在宏定义中写复杂的语句;
在函数体中中止代码段的处理。

好像有点抽象,那我们就来具体一些,通过代码来聊聊这些用法。

也强烈建议您在平常的项目中把这些小技巧用起来,模仿是第一步,先僵化-再优化-最后固化,这是提高编程能力的最有效方法。时间久了,用的多了,这些东西就是属于你的。

在宏定义中的妙用

错误的宏定义

// 目的:把两个参数分别自增一下#define OPT(a, b) a++; b++; int main(int argc, char *argv[]){ int i = 1; int j = 1; OPT(i, j); printf("i = %d, j = %d \n", i, j); return 0;} 

测试一下,结果没有问题(代码的目的就是让i和j这个2个变量都自增1):

i = 2, j = 2

而且OPT(i, j);中,最后的分号还可以省略,编译和结果都没有问题。

但是估计没有谁会在项目中这么使用宏吧?!看一下下面这个例子:在调用OPT宏的外层添加一个if条件判断

#define OPT(a, b) a++; b++; int main(int argc, char *argv[]){ int i = 1; int j = 1; if(0) OPT(i, j); printf("i = %d, j = %d \n", i, j); return 0;} 

打印结果是:

i = 1, j = 2

问题出现了:我们的本意是if条件为假,这2个变量都不要自增,但是输出结果却是:第二个参数自增了

其实问题很明显,把宏扩展开就一目了然了。

if(0) a++; b++; 

错误原因一目了然:由于if语句没有用大括号{}把需要执行的代码全部包裹住,导致只有a++;语句是在if语句的控制范围,而b++;语句无论如何都被执行了。

也许你会说,这个简单,使用if时,必须加上大括号{}。道理是没错,如果这个宏定义只有你自己使用,这不成问题。但是如果宏定义是你写的,而使用者是你的同事,那么你怎么要求别人必须按照你所规定的格式来编码?毕竟每个人的习惯是不一样的。

很多时候,要求别人是不现实的。更有效的方法是优化自己的输出,提供更安全的代码,让别人想犯错误都没机会。

比较好的宏定义

怎么做才能更安全?更通用呢?使用do-while

#define OPT(a, b) do{a++;b++;}while(0) 

也就是说,只要宏定义中存在多条语句,就可以用do-while把这些语句全部包裹起来,这样无论怎么使用这个宏,都不会有问题。

例如:

if(0) OPT(i, j); 

宏扩展之后代码为:

if(0) do { a++; b++; }while(0); 

如果给if加上大括号,视觉上会更好一些:

if(0) { OPT(i, j);} 

宏扩展之后代码为:

if(0) { do { a++; b++; }while(0);} 

可以看到,无论是否加上大括号{},从语法和语义上都不存在问题。

这里还有一个小细节可以留意一下:OPT(i,j);这行代码中,尾部是加了分号的。

如果没有加分号,那么宏扩展之后代码为:

if(0) do { a++; b++; }while(0) // 注意:这里没有分号 

因为while(0)没有分号,所以编译会出错。为了不对宏的使用者提出要求,可以在宏的最后加一个分号即可,如下:

#define OPT(a, b) do{a++;b++;}while(0); 

小结:使用do-while语句来包裹宏定义中的多行语句,解决了宏定义的安全问题。

但是,任何事情都不可能是完美的,例如:在宏定义中使用do-while就无法返回一个结果。

也就是说:如果我们需要从宏定义中返回一个结果,那么do-while就派不上用场了。那应该怎么办?

另一个也不错的宏定义

如果宏定义需要返回一个结果,最好的方式就是:使用({...})把宏定义中的多行语句包裹起来。如下:

#define ADD(a, b, c) ({ ++a; ++b; c=a+b; }) int i = 1;int j = 2;int k;printf("k = %d \n", ADD(i, j, k)); 

下面这张图来自GNU官方文档:

翻译过来就是:

GNU C中,在圆括号()中写复杂语句是合法的,这样你就可以在一个表达式中使用循环、switch、局部变量了。
什么是复杂语句呢?就是被大括号{}包裹的多行语句。
在上面的实例中,圆括号要放在大括号的外层。

使用({...})定义宏,因为是多行语句,可以返回一个结果,比do-while更胜一筹。

这里既然提到了在宏定义中使用局部变量,那我们再提供一个小技巧来提高代码的执行效率。

看一下这个宏定义:

#define max(a,b) ({ (a) > (b) ? (a) : (b) }) float i = 1.234;float j = 4.321;float max = max((i / 0.8 + 5) / 3, (j * 0.8) / 1.5); 

宏扩展之后, a或者b中,肯定有一个被计算2次。当然,这里的示例比较简单,体现不出差距。如果是对时间要求特别苛刻的场合,计算量又很大,那么这个宏中由于两次计算所耗费的时间就必须考虑了,那应该如何优化呢?使用局部变量

#define max(a,b) ({ int _a = (a), _b = (b); _a > _b ? _a : _b; }) 

通过增加局部变量_a和_b来缓存计算结果,就消除了2次计算的问题。

这个例子还可以再继续优化,这里的局部变量类型是int,这是写死的,只能比较两个整型的变量。如果写成这样:

#define max(a, b) ({ typeof(a) _a = (a), _b = (b); _a > _b ? _a : _b; }) 

也就是用typeof来动态获取比较变量的类型,这样的话,任何数值类型的变量都可以使用这个宏了。

关于typeof的说明,请看GNU的这张图,在文末的参考链接中,可以看到更加详细的官方说明。

在函数体中的妙用

先来看2段代码。

函数功能:返回错误代码对应的错误字符串

char *get_error_msg(int err_code){ if (1 == err_code) { return "invalid name"; } else if (2 == err_code) { return "invalid password"; } else if (3 == err_code) { return "network error"; }  return "unkown error";} 

思考:一个设计良好的函数只有一个出口,也就是return语句,但是这个函数有这么多的return语句,是不是显得很乱?示例代码体积很小,似乎没有感觉。但是上百行的函数在项目中还是比较常见的,在这种情况下如果给你来个十几个return语句,你会不会想把写代码的那个家伙拎过来扇几巴掌?

函数功能:通过TCP Socket连接服务器

void connect_server(char *ip, int port){ int ret, sockfd; sockfd = socket(...); if (sockfd < 0) { printf("socket create failed! \n"); goto end; }  ret = connect(sockfd, ...); if (ret < 0) { printf("connect failed! \n"); goto end; }  ret = send(sockfd, ...) if (ret < 0) { printf("send failed! \n"); goto end; } end: 其他代码} 

思考:TCP socket编程中,需要按照固定的顺序调用多个系统函数。这段代码中调用系统函数后,对结果进行了检查,这是非常好的习惯。如果在某个调用中发生错误,需要中止后面的操作,进行错误处理。虽然C语言中不禁止goto语句的使用,但是看到这么多的goto,难道就没有美观、更优雅的做法吗?

总结一下上面这2段代码,它们共同的特点是:

在一连串的语句中,只需要执行一部分的语句,也就是从代码块的某个中间位置中止执行。

中止执行,我们首先想到的就是break关键字,它主要用在循环和switch语句中。do-while循环语句首先执行循环体,在尾部才进行循环的判断。那么就可以利用这一点来解决这2段代码面对的问题。

解决多个return的问题

char *get_error_msg(int err_code){ char *msg; do { if (1 == err_code) { msg = "invalid name"; break; } else if (2 == err_code) { msg = "invalid password"; break; } else if (3 == err_code) { msg = "network error"; break; } else { msg = "unkown error"; break; } }while(0);  return msg;} 

解决goto的问题

void connect_server(char *ip, int port){ int ret, sockfd; do { sockfd = socket(...); if (sockfd < 0) { printf("socket create failed! \n"); break; }  ret = connect(sockfd, ...); if (ret < 0) { printf("connect failed! \n"); break; }  ret = send(sockfd, ...) if (ret < 0) { printf("send failed! \n"); break; } }while(0);  其他代码} 
这样的代码,是不是看起来顺眼多了?

总结

do-while的主要作用是循环处理,但是在这篇文章中,我们利用的点并不是循环功能,而是代码块的包裹和中止执行的功能。这些细小的点在一些牛逼的开源代码中很常见,看到了我们就要学习、模仿、使用,用的多了它就是你的了!

参考文档:
[1] https://gcc.gnu.org/onlinedocs/gcc/Typeof.html
[2] https://gcc.gnu.org/onlinedocs/gcc/Statement-Exprs.html
[3] https://stackoverflow.com/questions/9495962/why-use-do-while-0-in-macro-definition
[4] https://gcc.gnu.org/onlinedocs/gcc-6.2.0/gcc/Statement-Exprs.html#Statement-Exprs


免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭