当前位置:首页 > > 大鱼机器人
[导读]GD32F103是GD早期的产品,GD32E103和GD32F303是对GD32F103的升级和优化。


作者:笙歌君独忧

链接:https://blog.csdn.net/qq_23852045/article/details/109802955



 GD32F103是GD早期的产品,GD32E103和GD32F303是对GD32F103的升级和优化,所以4者是兼容的,虽然内核不同,但是通用外设几乎很少涉及到内核部分,在时间急迫的情况下可以使用ST的库开发。

一、相同点

1)外围引脚PIN TO PIN兼容,每个引脚上的复用功能也完全相同。
2)芯片内部寄存器、外部IP寄存器地址和逻辑地址完全相同,但是有些寄存器默认值不同,有些外设模块的设计时序上和STM32有差异,这点差异主要体现在软件上修改,详情见下文。
3)编译工具:完全相同例如:KEIL 、IAR
4)型号命名方式完全相同,所以替代只需找尾缀相同的型号即可,例如:STM32F103C8T6 与 GD32E103C8T6。
5)仿真工具:JLINK GDLINK

二、外围硬件区别


 


 三、硬件替换需要注意的地方

从上面的介绍中,我们可以看出,GD32F30/E103系列和STM32F103系列是兼容的,但也需要一些注意的地方。

1)BOOT0必须接10K下拉或接GND,ST可悬空,这点很重要。
2)RC复位电路必须要有,否则MCU可能不能正常工作,ST的有时候可以不要。
3)有时候发现用仿真器连接不上。因为GD的swd接口驱动能力比ST弱,可以有如下几种方式解决:
a、线尽可能短一些;
b、降低SWD通讯速率;
c、SWDIO接10k上拉,SWCLK接10k下拉。
4)使用电池供电等,注意GD的工作电压,例如跌落到2.0V~2.6V区间,ST还能工作,GD可能无法启动或工作异常。
四、使用ST标准库开发需要修改的地方

1)GD对时序要求严格,配置外设需要先打开时钟,在进行外设配置,否则可能导致外设无法配置成功;ST的可以先配置在开时钟。

2)修改外部晶振起振超时时间,不用外部晶振可跳过这步。
原因:GD与ST的启动时间存在差异,为了让GD MCU更准确复位。
修改:

将宏定义:#define HSE_STARTUP_TIMEOUT ((uint16_t)0x0500)修改为:#define HSE_STARTUP_TIMEOUT ((uint16_t)0xFFFF) 

3)GD32F10X flash取值零等待,而ST需要2个等待周期,因此,一些精确延时或者模拟IIC或SPI的代码可能需要修改。

原因:GD32采用专利技术提高了相同工作频率下的代码执行速度。
修改:如果使用for或while循环做精确定时的,定时会由于代码执行速度加快而使循环的时间变短,因此需要仿真重新计算设计延时。使用Timer定时器无影响。

4)在代码中设置读保护,如果使用外部工具读保护比如JFLASH或脱机烧录器设置,可跳过此步骤。
在写完KEY序列后,需要读该位确认key已生效,修改如下:


 


 总共需要修改如下四个函数:

FLASH_Status FLASH_EraseOptionBytes(void);FLASH_Status FLASH_ProgramOptionByteData(uint32_t Address, uint8_t Data);uint32_t FLASH_GetWriteProtectionOptionByte(void);FlagStatus FLASH_GetReadOutProtectionStatus(void); 

5)GD与ST在flash的Erase和Program时间上有差异,修改如下:


 


6)需求flash大于256K注意,小于256K可以忽略这项。

与ST不同,GD的flash存在分区的概念,前256K,CPU执行指令零等待,称code区,此范围外称为dataZ区。两者在擦写操作上没有区别,但在读操作时间上存在较大差别,code区代码取值零等待,data区执行代码有较大延迟,代码执行效率比code区慢一个数量级,因此data区通常不建议运行对实时性要求高的代码,为解决这个问题,可以使用分散加载的方法,比如把初始化代码,图片代码等放到data区。

总结:至此,经过以上修改,在不使用USB和网络能复杂协议的代码,就可以使用ST的代码操作了。


免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭