当前位置:首页 > > 21ic电子网
[导读]TMP100温度传感器最近一个新项目,板子尺寸有限,对传感器功耗要求也高,之前用的插件是RW1820温度传感器,位置不够了,就换成立TMP100贴片式的SOT23-6封装,完整的料号是TMP100AQDBVRQ1,TI出品的。看了一下资料精度±1℃,实际测试差不多2℃的样子,不过一般测温项目够用了。

出品  21ic论坛  laocuo1142

网站:bbs.21ic.com


TMP100温度传感器最近一个新项目,板子尺寸有限,对传感器功耗要求也高,之前用的插件是RW1820温度传感器,位置不够了,就换成立TMP100贴片式的SOT23-6封装,完整的料号是TMP100AQDBVRQ1,TI出品的。看了一下资料精度±1℃,实际测试差不多2℃的样子,不过一般测温项目够用了。


详细参数:
供电电压:2.7V~5V
接口类型:I2C
分辨率:9 bit to 12 bit
工作温度:-40℃~125℃
工作电流:150uA
操作频率:100 KHz /400KHz/3.4MHz

项目经验:TMP100温度传感器设计全过程
[size=14.0000pt]你如果需要低功耗的话,直接初始化为9bit,关断模式。关断模式就是采集转换一次温度数据之后,传感器自动进入cut down模式。
[size=13.3333px]uint8 TMP100_init(void)
[size=13.3333px]{
[size=13.3333px]    I2CStart();                             //启动I2C总线
[size=13.3333px]

[size=13.3333px]          I2CWriteByte(slaveaddr);                //发送从器件地址 90 写寄存器
[size=13.3333px]          if(I2CWaitACK()==0)                                 //从地址无响应
[size=13.3333px]          {
[size=13.3333px]                  return 0;
[size=13.3333px]          }                  
[size=13.3333px]          I2CWriteByte(0x01);                            //发送配置寄存器地址0x01
[size=13.3333px]          if(I2CWaitACK()==0)                                 //从地址无响应
[size=13.3333px]          {
[size=13.3333px]                  return 0;
[size=13.3333px]          }
[size=13.3333px]          I2CWriteByte(0x01);                                //写配置寄存器0x81????  0x01  设置为关断模式 读9bit
[size=13.3333px]          if(I2CWaitACK()==0)                                 //从地址无响应
[size=13.3333px]          {
[size=13.3333px]                  return 0;
[size=13.3333px]          }      
[size=13.3333px]          I2CStop();
[size=13.3333px]    return 1;
[size=13.3333px]}
然后每次读就转换一次,这样功耗是非常低的。
[size=13.3333px]uint8 Read_TMP100(void)
[size=13.3333px]{
[size=13.3333px]        volatile uint8 tempH,tempL;
[size=13.3333px]    uint8 i=0;
[size=13.3333px]    uint8 Tmp[2];
[size=13.3333px]     /*--设置温度探头寄存器--*/
[size=13.3333px]        I2CStart();                             //启动I2C总线
[size=13.3333px]

[size=13.3333px]          I2CWriteByte(slaveaddr);                //发送从器件地址 90 写寄存器
[size=13.3333px]          if(I2CWaitACK()==0)                                 //从地址无响应
[size=13.3333px]          {
[size=13.3333px]                  return 0;
[size=13.3333px]          }                  
[size=13.3333px]          I2CWriteByte(0x01);                            //发送配置寄存器地址0x01
[size=13.3333px]          if(I2CWaitACK()==0)                                 //从地址无响应
[size=13.3333px]          {
[size=13.3333px]                  return 0;
[size=13.3333px]          }
[size=13.3333px]          I2CWriteByte(0x81);                                //写配置寄存器0x81????  0x81  设置为读9bit
[size=13.3333px]          if(I2CWaitACK()==0)                                 //从地址无响应
[size=13.3333px]          {
[size=13.3333px]                  return 0;
[size=13.3333px]          }      
[size=13.3333px]          I2CStop();
[size=13.3333px]

[size=13.3333px]  /*--开始读取数据操作--*/
[size=13.3333px]          I2CStart();                             //启动I2C总线        
[size=13.3333px]          //I2CWriteByte(slaveaddr+1);              //发送从器件地址
[size=13.3333px]    I2CWriteByte(slaveaddr);                  //发送从器件地址
[size=13.3333px]          if(I2CWaitACK()==0)                                 //从地址无响应
[size=13.3333px]          {
[size=13.3333px]                  return 0;
[size=13.3333px]          }
[size=13.3333px]    I2CWriteByte(0x00);                      //读取温度寄存器
[size=13.3333px]          if(I2CWaitACK()==0)                                 //从地址无响应
[size=13.3333px]          {
[size=13.3333px]                  return 0;
[size=13.3333px]          }
[size=13.3333px]                        
[size=13.3333px]///**********************等待转换完毕**************************/         
[size=13.3333px]        DelayMCU_ms(40);
[size=13.3333px]         
[size=13.3333px]/***********************读取温度***************************/
[size=13.3333px]    I2CStart();
[size=13.3333px]   
[size=13.3333px]    I2CWriteByte(slaveaddr+1);                      //读取温度寄存器
[size=13.3333px]          if(I2CWaitACK()==0)                                 //从地址无响应
[size=13.3333px]          {
[size=13.3333px]                  return 0;
[size=13.3333px]          }
[size=13.3333px]          tempH = I2CReadByte();                                //读取温度高字节        
[size=13.3333px]          I2CSendAck();
[size=13.3333px]

[size=13.3333px]          tempL = I2CReadByte();                                //读取低字节        
[size=13.3333px]          I2CSendNoAck();         
[size=13.3333px]   
[size=13.3333px]          I2CStop();
[size=13.3333px]//    RealTemp = (int16)(((uint16)tempH<<8)+tempL);
[size=13.3333px]    RealTemp = (int16)(((uint16)tempH<<3)+((tempL>>7)*4));
[size=13.3333px]          return 1;
[size=13.3333px]}


9bit采集的话,主要就是0.5℃为一个采集间隔,按着这个传感器的精度,其实也差不多了。 

项目经验:TMP100温度传感器设计全过程   [size=18.6667px]

待机功耗确实非常低,官方标称的0.1uA,确实是的,不需要另外加电源控制了。
项目经验:TMP100温度传感器设计全过程

[size=10.5000pt]

[size=10.5000pt]

温度寄存器和温度计算方法。

项目经验:TMP100温度传感器设计全过程

对应的计算公式:
温度值= T11×27 + T10×26 +T9×25 +T8×24+T7×23+T6×22+T5×21+
T4×20+T3×2-1+T2×2-2+T1×2-3+T0×2-4

选择12 Bits 位精度时,有效位为T11~T0,最低位从T0开始,故分辨率为0.0625℃

选择11 Bits 位精度时,有效位为T11~T1,最低位从T1开始,故分辨率为0.125℃

选择10 Bits 位精度时,有效位为T11~T2,最低位从T2开始,故分辨率为0. 25℃

选择9 Bits 位精度时,有效位为T11~T3,最低位从T3开始,故分辨率为0.5℃

我这个项目使用的是9位数据,这样的转换时间是最短的。

项目经验:TMP100温度传感器设计全过程

实际测试我都是延时40ms,去采集12bit的温度,也是可以正常采集的。

IIC的程序我就暂时不贴了,如果有需要可以留言。现在流行IOT产品越来越多了,温度是一个常规的参数,这个传感器也是一个好选择。

在电路上,只需要在通讯线上接上拉电阻就行了,如下图:

项目经验:TMP100温度传感器设计全过程


本文系21ic论坛网友laocuo1142原创



项目经验:TMP100温度传感器设计全过程

免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

21ic电子网

扫描二维码,关注更多精彩内容

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭