当前位置:首页 > 公众号精选 > 松哥电源
[导读]在常见的电源中,经常使用的电压多为正电压,正电压也很容易理解,以大地为参考地,即为0V 电压,比0V电压高的电压都是正电压。

1、前言

在常见的电源中,经常使用的电压多为正电压,正电压也很容易理解,以大地为参考地,即为0V 电压,比0V电压高的电压都是正电压,如图1所示。由图1和图2 可以看出,这是一个很常见的降压电路,输入和输出都为正电压。

(a) 正输入正输出电路


(b) 工作波形


图1:正输入正输出电压电路及波形


但是在笔记本电源和通信电源中,越来越多的开始用负电压来作为参考电压或偏置电压。如图2是市面售卖的ATX电源,共五路输出电压,其中四路正压输出,一路负压输出。负压输出-12V/0.5A,输出功率为6W。那么如果做到负压输出呢?通常需要把内部的正电压转为负电压再输出。比如图3的+12V电压,一路直接作为ATX电源的输出,另一路通过电路变换成-12V的负电压再输出。


2:带负电压输出的ATX 电源


2、负电压实现的方法

基于客户需求,总结归纳出实现正电压输入负电压输出的方法有三种: 方法一是负压芯片的方法;方法二是使用Buck-Boost电路的方法;方法三是使用BUCK直接生成负压。

方法一: 负压芯片实现

在电子市场或电子网站上,可以很容易找到使用charge pump方式的负电压芯片,但是输入的电压最高只有5.5V左右, 带载能力只有几十毫安,比如TI TPS6040X series。此种负压芯片输出功率太小,不能满足电脑和服务器电源的应用需求。

方法二: Buck-Boost电路方法

如图3的 Buck-Boost方法实现生成负压的变换,当主开关Q 开通时,由于D反向,Vin 流过Q的电流只可以给电感L充电,如图4(a)中 A 的描述路径;当Q截止时,根据楞次定律,电流的方向变为图4中 B的描述路径,由图4(a)可以看出,Vo输出为负电压。

使用Buck-Boost负电压输出的方法如图4(b)所示。从图中明显可以看出,此种方法需要额外增加一个运算放大器A2,因为芯片的参考地还是最终和输入的参考地连接在一起的,由于输出是负电压,需要对反馈信号做反向,然后送到FB,这种方法会增加额外成本,所以用Buck-Boost电路来实现负压也不是太理想。

(a) Buck-Boost负电压电路工作原理


(b) 额外增加运算放大器


图3:Buck-Boost负电压电路


方法三:用Buck芯片产生出负压

用AOS通用的一款Non-synchronous Buck AOZ1284PI实现正输入负输出的电压变换,此芯片为高压BUCK芯片,最高输入电压达到36V,带载能力达到4A。完全可以满足ATX电源系统的功率要求。


(a) 用BUCK芯片实现负电压的原理图



(b) BUCK芯片实现负压输出的工作原理


图4: BUCK芯片实现负压输出


由图4可以看出,此种方法没有增加额外零件就可以实现正电压输入负电压输出,连接方式可以简化为如图4(b) 所示。

图4原理图的公式推导如下,假设二极管开关的正向导通压降为Vd,MOS开关管为Vsw。主开关开通和关断期间,电感上的电压可列出如下式子

Von=Vin-Vsw

Voff=Vo+Vd

根据伏秒法:Von*ton=Voff*toff,可以得出:

toff/ton=-(Vin-Vsw)/(Vo+Vd)

可以得到占空比方程为

D=ton/(ton+toff)=ton/T

=(Vo+Vd)/(Vo+Vd-Vin+Vsw)

若MOS开关管和二极管的压降远小于输入输出电压,上面占空比的公式可以简化为

D=Vo/(Vo-Vin)

所以,输入和输出的电压关系可以表示为:

Vo=-Vin*D/(1-D)

从上面的公式中可以看出,输出电压的绝对值可以大于或者小于输入电压;由于在Q导通期间,输入没有向输出提供能量,此时主要为输出大电容提供能量维持给负载,只有在Q关断时,由电感提供能量给负载且给输出电容充电,所以,此种负输出线路的输出纹波比普通的正输出降压线路纹波要大。

此应用中,电感的选择也非常的重要,下面介绍此应用中的电感公式推理。假定应用的开关频率是f,开关周期T导通时间为

ton=D*T

假定r为纹波因数,r=0.4,r为电感电流的纹波(最大值和最小值之差)和电感电流的平均值IDC的比值,电感的感量为

L=Vin*ton/IDC*r

其中电感的平均电流IDC为:

IDC=Io/(1-D)

另外从图4可以看出,二极管续流期间,主开关管承受的压降是:

VQ=Vin+Vd-(-Vo)=Vin+Vd+Vo

由此可以看出,用BUCK芯片实现负压输出的电路最高输入电压不能达到芯片的标称值,而是由输出电压来决定的。以AOZ1284PI为例,忽略二极管压降,假设输出为-12V,最高输入电压只能为24V,不再是芯片标称的36V。

由以上的公式推理可以看出,虽然使用的是BUCK芯片,但是因为连接方式的不同,本质上已经变换成Buck-Boost电路。所以不能用设计BUCK电路的思路来设计此负电压输出电路。

3、应用举例

用AOZ1284PI Non-synchronous BUCK降压芯片实现正输入负输出,以+12Vin 输入,-12Vout输出,带载2A应用需求为例。

先用SMPLIS仿真软件(参考线路如图8)来模拟是否可以用Non-synchronous BUCK在不需要额外增加零件的情况下得到正输入负输出的电压,把电感的输出连接到输入的地上,原来芯片的参考地(正输出的地)作为输出,即为负输出,调整芯片外围参数如参考线路。

(a) AOZ1284PI实现负压的电路图



(b) 仿真波形


图5BUCK芯片实现负电压输出的电路及仿真波形


从图5的仿真结果可以看出,用BUCK芯片搭建的电路是可以实现想要的正电压输入负电压输出的。

制定评估板,如图6所示,测试验证,测试验证波形如图7所示。


图6:基于AOZ1284PI负压输出电路PCB


由图7(a) 可以看出,此验证线路带载2A 开机正常。由图7(b) 可以看出,此验证线路带载2A关机正常。7(c) 为用AOZ1284PI搭建负压电路的实际测试的工作波形。因此,可以得出,使用Non-synchronous BUCK是可以实现正电压输入负电压输出和较好的带载能力的,且只使用BUCK原有的零件,没有增加额外成本。


(a) 开机波形



(b) 关机波形



(c) 稳态工作波形


图7:基于AOZ1284PI负压输出电路的测试波形


来进一步分析实际测试波形。由图7的波形可以发现,电感电流的平均值IDC比实际的Io大很多,这是与正输入正输出的BUCK降压不同的地方。

D=Vo/(Vo-Vin)=-12/(-12-12)=50%

IDC=Io/(1-D)=2.16/(1-0.5)=4.32A

由计算结果和实际量测的波形数据比对来看,结果相一致。所以在实际应用中,需要注意电感电流的IPK值是否已经超过选用芯片的过流保护点及电感的额定电流值,因为实际带载的电流Io比电感电流的IDC小很多,比电感的IPK小更多,所以,选择一个合适的电感也是这个正输入负输出应用成功的关键之一。

通过上述电感量和额定电流公式计算得出此12V输入转-12输出,带载2A的应用为例的电感量可选择39uH,额定电流最少5.2A(或与之相近的电感)。

4、结论

由于现有负压芯片的输出功率都比较低,不能够满足大功率的需求,在不增加额外成本的前提下,使用Non-synchronous BUCK转换出负电压的应用具有较好的带载能力,且比普通负压芯片更加灵活,应用范围更加广泛。

参考文献

[1] 刘松. 汽车电子系统中负压变换器的设计. 电子设计应用,2009,04

[2] Zach Zhang. How to generate negative output. Alpha and Omega Semiconductor, Inc. Application Note PIC-002

免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

DC-DC变换器集成电路/模块不仅成为各种功率电子设备的心脏,而且也成为各种功率电子设备和系统高效率、低功耗、安全可靠运行和自动化控制的关键。

关键字: 混合DC/DC 电源 变换器

环路补偿是设计DC-DC转换器的关键步骤。如果应用中的负载具有较高的动态范围,设计人员可能会发现转换器不再能稳定的工作

关键字: DC/DC 变换器 拓扑结构

DC-DC电源芯片是一种用于控制和调节直流电压的电路,为各种电子系统提供稳定可靠的DC电压。它们在移动设备、通信产品、汽车、医疗仪器和各种工业领域等各种应用中都有广泛的用途。

关键字: DC/DC电源 变换器 开关电源

DC-DC转换器是将一种直流电压或电流电平转换为另一种直流电压或电流电平的机电设备或电子电路。在大多数情况下,设备只使用一个电源。

关键字: 整流 DC/DC电源 变换器

随着半导体行业的发展,手机与通讯、消费类电子等下游需求的拉动,电源管理芯片的应用逐渐增加。相关政策和人才与市场接轨,产业环境不断完善,电源管理芯片进口替代效应明显增强。

关键字: DC/DC 电源 变换器

搞嵌入式的工程师们往往把单片机、ARM、DSP、FPGA搞的得心应手,而一旦进行系统设计,到了给电源系统供电,虽然也能让其精心设计的程序运行起来

关键字: DC/DC 变换器 驱动电路

来自直流电源的能量会在DC-DC变流器中发生变换,由于其能在较宽范围内调整输出电压,内部使用开关元件将能量从源端尽可能吸取到负载端,以保证改变输出能量的稳定,耽误的损耗降至最低,实现输入和输出的能量变换。

关键字: DC/DC 电源 变换器

DC-DC电源芯片是一种用于控制和调节直流电压的电路,为各种电子系统提供稳定可靠的DC电压。它们在移动设备、通信产品、汽车、医疗仪器和各种工业领域等各种应用中都有广泛的用途。

关键字: DC/DC 电源 变换器

DC/DC变换器随着技术的发展不断进步,与变换器相关的技术也在不断发展,这些技术的发展也在一定程度上影响着变换器的发展。

关键字: DC/DC 变换器 航天器

今天,小编将在这篇文章中为大家带来双向直流变换器及其工作原理的有关报道,通过阅读这篇文章,大家可以对双向直流变换器具备清晰的认识,主要内容如下。

关键字: 双向变换器 变换器
关闭
关闭