当前位置:首页 > 公众号精选 > 小林coding
[导读]现在用谷歌浏览器看 B 站视频,默认是用 HTTP/2 协议,它相比 HTTP/1.1 性能提高很多,但是其实看 B 站视频还能更快!

现在用谷歌浏览器看 B 站视频,默认是用 HTTP/2 协议,它相比 HTTP/1.1 性能提高很多,但是其实看 B 站视频还能更快!

因为 B 站部分视频服务器支持使用 QUIC 协议观看视频,QUIC 是基于 UDP 传输协议实现的,而且最新的 HTTP/3 使用的正是 QUIC 协议,它相比 HTTP/2 性能其实更好,观看视频体验更佳,特别是弱网环境下。

QUIC 协议性能有多好?

Chromium ( Google 的 Chrome 浏览器背后的引擎)团队表示,其发现 QUIC 的性能优势特别高,使得 Google 搜索延迟减少了 2% 以上,YouTube 的重新缓冲时间减少了 9% 以上,PC 客户端吞吐量增加了 3% 以上,移动设备的客户端吞吐量增加了 7% 以上。


怎么用 QUIC 看 B 站视频?

手机端我没研究过怎么使用 QUIC 协议看 B 站视频,但是谷歌浏览器则很容易搞定。

谷歌浏览器支持 QUIC 协议,这个是属于实验性功能,QUIC 协议实际上还在草案中,还没有正式发布,所以不是默认启动的,需要手动打开。

第一步,打开Chrome浏览器, 在地址输入 chrome://flags/#enable-quic, 将标志设置为 Enabled。

第二步,重启浏览器后, 打开B站, 随便点开个视频,然后检查是否使用 QUIC 协议进行视频播放, 检查方法如下:

  • 按下 F12进入浏览器调试信息界面;

  • 选取 Network->Protocol, 如果 Protocol 显示 h3 则表示目前是使用 HTTP/3 (意味着使用 QUIC 协议)协议进行视频内容传输。

比如下图,我在看何同学采访库克的B站视频,使用了 HTTP3 协议:


注意:如果打开后,你访问速度受影响而变慢了,那么你记得要关闭掉这个功能,因为 QUIC 协议使用的传输协议是 UDP,有些运营商的网络在繁忙的时候,会把 UDP 包给丢掉。

转场

好了,B 站的事情就介绍到这了,你以为这次我要聊 B 站,其实我要聊的是 HTTP/3 !

真不容易呀,小林为了让大家学习 HTTP/3,煞费苦心布置了 B 站这个幌子,吸引大家点进来。所以,大家不要觉得是标题党哈。

事实上,HTTP/3 现在还没正式推出,不过自 2017 年起, HTTP/3 已经更新到 34 个草案了,基本的特性已经确定下来了,对于包格式可能后续会有变化。

所以,这次 HTTP/3 介绍不会涉及到包格式,只说它的特性。


美中不足的 HTTP/2

HTTP/2 通过头部压缩、二进制编码、多路复用、服务器推送等新特性大幅度提升了 HTTP/1.1 的性能,而美中不足的是 HTTP/2 协议是基于 TCP 实现的,于是存在的缺陷有三个。

  • 队头阻塞;

  • TCP 与 TLS 的握手时延迟;

  • 网络迁移需要重新连接;

队头阻塞

HTTP/2 多个请求是跑在一个 TCP 连接中的,那么当 TCP 丢包时,整个 TCP 都要等待重传,那么就会阻塞该 TCP 连接中的所有请求。

因为 TCP 是字节流协议,TCP 层必须保证收到的字节数据是完整且有序的,如果序列号较低的 TCP 段在网络传输中丢失了,即使序列号较高的 TCP 段已经被接收了,应用层也无法从内核中读取到这部分数据,从 HTTP 视角看,就是请求被阻塞了。

举个例子,如下图:

图中发送方发送了很多个 packet,每个 packet 都有自己的序号,你可以认为是 TCP 的序列号,其中 packet 3 在网络中丢失了,即使 packet 4-6 被接收方收到后,由于内核中的 TCP 数据不是连续的,于是接收方的应用层就无法从内核中读取到,只有等到 packet 3 重传后,接收方的应用层才可以从内核中读取到数据,这就是 HTTP/2 的队头阻塞问题,是在 TCP 层面发生的。

TCP 与 TLS 的握手时延迟

发起 HTTP 请求时,需要经过 TCP 三次握手和 TLS 四次握手(TLS 1.2)的过程,因此共需要 3 个 RTT 的时延才能发出请求数据。

另外, TCP 由于具有「拥塞控制」的特性,所以刚建立连接的 TCP 会有个「慢启动」的过程,它会对 TCP 连接产生"减速"效果。

网络迁移需要重新连接

一个 TCP 连接是由四元组(源 IP 地址,源端口,目标 IP 地址,目标端口)确定的,这意味着如果 IP 地址或者端口变动了,就会导致需要 TCP 与 TLS 重新握手,这不利于移动设备切换网络的场景,比如 4G 网络环境切换成 WIFI。

这些问题都是 TCP 协议固有的问题,无论应用层的 HTTP/2 在怎么设计都无法逃脱。

要解决这个问题,就必须把传输层协议替换成 UDP,这个大胆的决定,HTTP/3 做了!


QUIC 协议的特点

我们深知,UDP 是一个简单、不可靠的传输协议,而且是 UDP 包之间是无序的,也没有依赖关系。

而且,UDP 是不需要连接的,也就不需要握手和挥手的过程,所以天然的就比 TCP 快。

当然,HTTP/3 不仅仅只是简单将传输协议替换成了 UDP,还基于 UDP 协议在「应用层」实现了 QUIC 协议,它具有类似 TCP 的连接管理、拥塞窗口、流量控制的网络特性,相当于将不可靠传输的 UDP 协议变成“可靠”的了,所以不用担心数据包丢失的问题。

QUIC 协议的优点有很多,这里举例几个,比如:

  • 无队头阻塞;

  • 更快的连接建立;

  • 连接迁移;

无队头阻塞

QUIC 协议也有类似 HTTP/2 Stream 与多路复用的概念,也是可以在同一条连接上并发传输多个 Stream,Stream 可以认为就是一条 HTTP 请求。

由于 QUIC 使用的传输协议是 UDP,UDP 不关心数据包的顺序,如果数据包丢失,UDP 也不关心。不过,QUIC 协议会保证数据包的可靠性,每个数据包都有一个序号唯一标识。

如果 QUIC 连接中的某个流中的一个数据包丢失了,只会阻塞该流,其他流不会受影响这与 HTTP/2 不同,HTTP/2 只要某个流中的数据包丢失了,其他流也会因此受影响。

所以,QUIC 连接上的多个 Stream 之间并没有依赖,都是独立的,某个流发生丢包了,只会影响该流,其他流不受影响,消除了 HTTP/2 的队头阻塞问题。

更快的连接建立

对于 HTTP/1 和 HTTP/2 协议,TCP 和 TLS 是分层的,分别属于内核实现的传输层、openssl 库实现的表示层,因此它们难以合并在一起,需要分批次来握手,先 TCP 握手,再 TLS 握手。

HTTP/3 在传输数据前虽然需要 QUIC 协议握手,这个握手过程只需要 1 RTT,握手的目的是为确认双方的「连接 ID」,连接迁移就是基于连接 ID 实现的。

但是 HTTP/3 的 QUIC 协议并不是与 TLS 分层,而是QUIC 内部包含了 TLS,它在自己的帧会携带 TLS 里的“记录”,再加上 QUIC 使用的是 TLS1.3,因此仅需 1 个 RTT 就可以「同时」完成建立连接与密钥协商,甚至在第二次连接的时候,应用数据包可以和 QUIC 握手信息(连接信息 + TLS 信息)一起发送,达到 0-RTT 的效果

如下图右边部分,HTTP/3 当会话恢复时,有效负载数据与第一个数据包一起发送,可以做到 0-RTT:

连接迁移

在前面我们提到,基于 TCP 传输协议的 HTTP 协议,由于是通过四元组(源 IP、源端口、目的 IP、目的端口)确定一条 TCP 连接。

那么当移动设备的网络从 4G 切换到 WIFI 时,意味着 IP 地址变化了,就必须要断开连接,然后重新建立连接,而建立连接的过程包含 TCP 三次握手和 TLS 四次握手的时延,以及 TCP 慢启动的减速过程,给用户的感觉就是网络突然卡顿了一下,因此连接的迁移成本是很高的。

而 QUIC 协议没有用四元组的方式来“绑定”连接,而是通过连接 ID来标记通信的两个端点,客户端和服务器可以各自选择一组 ID 来标记自己。

因此,即使移动设备的网络变化后,导致 IP 地址变化了,只要仍保有上下文信息(比如连接 ID、TLS 密钥等),就可以“无缝”地复用原连接,消除重连的成本,没有丝毫卡顿感,达到了连接迁移的功能。


HTTP/3 协议

了解完 QUIC 协议的特点后,我们再来看看 HTTP/3 协议在 HTTP 这一层做了什么变化。

HTTP/3 同 HTTP/2 一样采用二进制帧的结构,不同的地方在于 HTTP/2 的二进制帧里需要定义 Stream,而 HTTP/3 自身不需要再定义 Stream,直接使用 QUIC 里的 Stream,于是 HTTP/3 的帧的结构也变简单了。

从上图可以看到,HTTP/3 帧头只有两个字段:类型和长度。

根据帧类型的不同,大体上分为数据帧和控制帧两大类,HEADERS 帧(HTTP 头部)和 DATA 帧(HTTP 包体)属于数据帧。

HTTP/3 在头部压缩算法这一方便也做了升级,升级成了 QPACK。与 HTTP/2 中的 HPACK 编码方式相似,HTTP/3 中的 QPACK 也采用了静态表、动态表及 Huffman 编码。

对于静态表的变化,HTTP/2 中的 HPACK 的静态表只有 61 项,而 HTTP/3 中的 QPACK 的静态表扩大到 91 项。

HTTP/2 和 HTTP/3 的 Huffman 编码并没有多大不同,但是动态表编解码方式不同。

所谓的动态表,在首次请求-响应后,双方会将未包含在静态表中的 Header 项更新各自的动态表,接着后续传输时仅用 1 个数字表示,然后对方可以根据这 1 个数字从动态表查到对应的数据,就不必每次都传输长长的数据,大大提升了编码效率。

可以看到,动态表是具有时序性的,如果首次出现的请求发生了丢包,后续的收到请求,对方就无法解码出 HPACK 头部,因为对方还没建立好动态表,因此后续的请求解码会阻塞到首次请求中丢失的数据包重传过来。

HTTP/3 的 QPACK 解决了这一问题,那它是如何解决的呢?

QUIC 会有两个特殊的单向流,所谓的单项流只有一端可以发送消息,双向则指两端都可以发送消息,传输 HTTP 消息时用的是双向流,这两个单向流的用法:

  • 一个叫 QPACK Encoder Stream, 用于将一个字典(key-value)传递给对方,比如面对不属于静态表的 HTTP 请求头部,客户端可以通过这个 Stream 发送字典;

  • 一个叫 QPACK Decoder Stream,用于响应对方,告诉它刚发的字典已经更新到自己的本地动态表了,后续就可以使用这个字典来编码了。

这两个特殊的单向流是用来同步双方的动态表,编码方收到解码方更新确认的通知后,才使用动态表编码 HTTP 头部。


总结

HTTP/2 虽然具有多个流并发传输的能力,但是传输层是 TCP 协议,于是存在以下缺陷:

  • 队头阻塞,HTTP/2 多个请求跑在一个 TCP 连接中,如果序列号较低的 TCP 段在网络传输中丢失了,即使序列号较高的 TCP 段已经被接收了,应用层也无法从内核中读取到这部分数据,从 HTTP 视角看,就是多个请求被阻塞了;

  • TCP 和 TLS 握手时延,TCL 三次握手和 TLS 四次握手,共有 3-RTT 的时延;

  • 连接迁移需要重新连接,移动设备从 4G 网络环境切换到 WIFI 时,由于 TCP 是基于四元组来确认一条 TCP 连接的,那么网络环境变化后,就会导致 IP 地址或端口变化,于是 TCP 只能断开连接,然后再重新建立连接,切换网络环境的成本高;

HTTP/3 就将传输层从 TCP 替换成了 UDP,并在 UDP 协议上开发了 QUIC 协议,来保证数据的可靠传输。

QUIC 协议的特点:

  • 无队头阻塞,QUIC 连接上的多个 Stream 之间并没有依赖,都是独立的,也不会有底层协议限制,某个流发生丢包了,只会影响该流,其他流不受影响;

  • 建立连接速度快,因为 QUIC 内部包含 TLS1.3,因此仅需 1 个 RTT 就可以「同时」完成建立连接与 TLS 密钥协商,甚至在第二次连接的时候,应用数据包可以和 QUIC 握手信息(连接信息 + TLS 信息)一起发送,达到 0-RTT 的效果。

  • 连接迁移,QUIC 协议没有用四元组的方式来“绑定”连接,而是通过连接 ID 来标记通信的两个端点,客户端和服务器可以各自选择一组 ID 来标记自己,因此即使移动设备的网络变化后,导致 IP 地址变化了,只要仍保有上下文信息(比如连接 ID、TLS 密钥等),就可以“无缝”地复用原连接,消除重连的成本;

另外 HTTP/3 的 QPACK 通过两个特殊的单向流来同步双方的动态表,解决了 HTTP/2 的 HPACK 队头阻塞问题。

不过,由于 QUIC 使用的是 UDP 传输协议,UDP 属于“二等公民”,大部分路由器在网络繁忙的时候,会丢掉 UDP包,把“空间”让给 TCP 包,所以 QUIC 的推广之路应该没那么简单。

期待,HTTP/3 正式推出的那一天!


参考连接
  1. https://medium.com/faun/http-2-spdy-and-http-3-quic-bae7d9a3d484

  2. https://developers.google.com/web/fundamentals/performance/http2?hl=zh-cn

  3. https://blog.cloudflare.com/http3-the-past-present-and-future/

  4. https://tools.ietf.org/html/draft-ietf-quic-http-34

  5. https://tools.ietf.org/html/draft-ietf-quic-transport-34#section-17

  6. https://ably.com/topic/http3?amp%3Butm_campaign=evergreen&%3Butm_source=reddit&utm_medium=referral

  7. https://www.nginx.org.cn/article/detail/422

  8. https://www.bilibili.com/read/cv793000/

  9. https://www.chinaz.com/2020/1009/1192436.shtml

免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

TCP 是基于连接的数据流的协议,先建立连接再进行通信,而且在通信过程中会检查数据是否发送成功。优点就是保证数据的完整性和准确性,缺点就是效率较低。

关键字: TCP 数据流 协议

在进行socket通信开发时,一般会用到TCP或UDP这两种传输层协议,UDP(User Datagram Protocol)是一种面向无连接的协议,在数据发送前,不需要提前建立连接,它可以更高效地传输数据,但可靠性无法...

关键字: socket TCP UDP

客户端主动调用关闭连接的函数,于是就会发送 FIN 报文,这个 FIN 报文代表客户端不会再发送数据了,进入 FIN_WAIT_1 状态;

关键字: 客户端 TCP

之前写过 TCP 三次握手和四次挥手过程中,途中某一步的报文丢失会发生什么的文章。

关键字: TCP 服务端

事情从一个健身教练说起吧。李东,自称亚健康终结者,尝试使用互联网的模式拓展自己的业务。在某款新开发的聊天软件琛琛上发布广告。键盘说来就来。疯狂发送"李东",回车发送!,"亚健康终结者",再回车发送!还记得四层网络协议长什...

关键字: TCP UDP 数据包 应用层

传输控制协议(TCP,Transmission Control Protocol)是为了在不可靠的互联网络上提供可靠的端到端字节流而专门设计的一个传输协议。

关键字: TCP

IP是Internet Protocol(网际互连协议)的缩写,是TCP/IP体系中的网络层协议。设计IP的目的是提高网络的可扩展性:一是解决互联网问题,实现大规模、异构网络的互联互通;二是分割顶层网络应用和底层网络技术...

关键字: IP TCP 主机

Internet 协议集支持一个无连接的传输协议,该协议称为用户数据包协议(UDP,User Datagram Protocol)。UDP 为应用程序提供了一种无需建立连接就可以发送封装的 IP 数据包的方法。RFC 7...

关键字: UDP TCP IP

选路协议,支持路由器封装并发送的网络通信语言。选路协议的例子有以太网、AppleTalk、TCP/IP、帧中继和X.25。以太网(Ethernet)指的是由Xerox公司创建并由Xerox、Intel和DEC公司联合开发...

关键字: 选路协议 TCP IP

超文本传输协议(Hyper Text Transfer Protocol,HTTP)是一个简单的请求-响应协议,它通常运行在TCP之上。它指定了客户端可能发送给服务器什么样的消息以及得到什么样的响应。请求和响应消息的头以...

关键字: HTTP WEB TCP
关闭
关闭