当前位置:首页 > > 21ic电子网
[导读]今天和大家分享一下自己设计的一款低压直流伺服驱动器的电源设计,采用了TI的宽输入电压范围(7.5V至100V)DCDC芯片LM5017和升压芯片LM2731,价格实惠,且供货稳定。

出品 21ic论坛  lvyunhua

网站:bbs.21ic.com


今天和大家分享一下自己设计的一款低压直流伺服驱动器的电源设计,采用了TI的宽输入电压范围(7.5V至100V)DCDC芯片LM5017和升压芯片LM2731,价格实惠,且供货稳定,对于低压直流伺服的成本控制有极大好处。
首先讲下我的设计思路,我设计的电源部分主要有12V,5V和3.3V三种电源,分别给MOS驱动,电机反馈电路以及MCU等器件供电,自己大致估算了下各个电源所需功耗如下:12V驱动电路最大不超过50mA,5V输出给反馈供电不超过200mA;同时5V经过LDO转为3.3V给MCU以及其他电路供电,所需电流不超过80mA.所以整个驱动器总消耗功率为:
12*0.05+5*(0.2+0.08)=2W,考虑电源转换效率假设为70%,设计的电源输出功率应为:2/0.7=2.857W.
由于低压直流伺服驱动器输入电源需要兼容12V,24V,48V,72V等不同电源,因此需要选用输入范围比较宽的芯片,LM5017输入范围满足该设计需求,可调输出5V电压,输出电流可达600mA,输出功率大于2.875W,满足使用要求。然后5V电压一路通过AMS1117-3.3稳压芯片转换成3.3V电压,另外一路通过升压芯片LM2731转换成12V电压驱动MOS管。下面简单介绍下这两款DCDC芯片用法。
LM5017芯片资料介绍,芯片集成了100V高侧和低侧MOS开关,外部无需肖特基二极管,FB脚为1.225V的基准电压,2%的反馈基准电压精度,开关频率可调至1MHz,可调低压闭锁保护,具有远程关断和热关断功能。
芯片引脚介绍,2脚是电源输入引脚,3脚为电源电压检测,一般通过两个电阻分压接入,如果电源电压经过电阻分压接入3脚的电压大于1.225V,则芯片开启工作,如果该脚输入电压低于0.66V时,芯片处于关闭模式。RON引脚接电阻到电源输入端,该电阻阻值决定了芯片开启时间,建议值为100ns。VCC为芯片内部输出电源,一般为7.6V,用于驱动外部MOS管所需。BST和SW脚之间外接0.01uF陶瓷电容,它由VCC通过内部二极管充电的,具体可以看芯片内部框图。
设计思路参考:低压直流伺服电源设计全过程
设计思路参考:低压直流伺服电源设计全过程
芯片内部框图
主要参数介绍,通过该表格我们清楚了解到该芯片输出电流限制值,欠压输入锁定值,内部VCC调压器输出值等参数,为我们设计提供重要参考。
设计思路参考:低压直流伺服电源设计全过程
电路设计原理
设计思路参考:低压直流伺服电源设计全过程
主要元件选型及计算,通过R20,R21,C219组成反馈电路得出输出电压为:
VO=1.225*(3.3+1)/1≈5.3V

输入电压最低为:

Vin=1.225*(100+10)/10≈13.5V

开关频率为:

Fsw=5.3/(0.499*0.00009)≈118KHz

要求在最大输入电压95V下电感输出最大电流纹波=0.4*Iout=0.24A

则电感选择:
L=(95-5.3)*5.3/95/118/0.24≈180uH

要求输入电压变化范围为50-45=5,输入电容选择:
C=1/4/118/5≈0.47uF

要求输出电压纹波为10mV,则输出电容选择:
C=0.24/8/118/0.01≈27uF,为了进一步减少电压纹波可以适当加大输出电容。

由R301,C224,C225组成III型纹波电路,更好的降低电路输出纹波,使后面的电路工作更加稳定可靠。

LM2731芯片资料介绍,由于MOS管驱动所需电流不大,这里采用升压芯片将5V升至12左右去驱动,且该芯片体积小,所需外围器件也少,成本也低,这对于低压直流伺服驱动器成本设计和空间尺寸设计都有很大帮助;另外一个好处就是,如果产品所要求输出的5V功率不够,可以直接更换LM5017芯片即可,而升压这部分电路可以保持不变的,何乐而不为呢。

该芯片内部集成MOS管,开关频率有两种:1.6MHz和0.6MHz,可以通过外部管脚配置,输入电压2.7V到14V,输出可以最大可以到20V,开关电流高达1.8A。
芯片引脚介绍,FB脚基准电压为1.23V,VIN为电源输入脚,设计的输入为5V电压,SHDN脚为低电平关闭,设计接一个电阻到电源端,SW脚为开关输出脚,通过芯片内部框图可知该脚为开漏输出,外部电感一端接电源,另一端接该脚,存储能量,电压才能上去。

设计思路参考:低压直流伺服电源设计全过程 芯片内部框图
设计思路参考:低压直流伺服电源设计全过程
主要参数介绍,通过下面参数表我们可以知道芯片的输入电压范围,输出电压,静态工作电流,开关电流限制以及开关频率等参数,这些对我们设计电路很有帮助,需要仔细了解并掌握。
设计思路参考:低压直流伺服电源设计全过程
设计思路参考:低压直流伺服电源设计全过程
设计思路参考:低压直流伺服电源设计全过程
电路设计原理
设计思路参考:低压直流伺服电源设计全过程

主要元件选型及计算,通过R275,R276,C211组成反馈电路得出输出电压为:VO=1.23*(120+12)/12≈13.5V
虽然芯片内部有补偿,但是C211也不可缺少,有助于稳定电压输出。

该电容选择:
C=1/2/3.14/120/6≈220pF
选择的芯片为后缀带X,则开关频率为1.6MHz

输入电容常用2.2uF,而输出电容常用为10uF,可根据实际应用负载以及纹波要求情况适当加大输出电容。

D19选择反向耐压大于20V的肖特基二极管,正向平均电流需要大于0.5A为好。

以上设计及观点纯属个人,该电路已经成功应用于实际产品中,得到广大客户的一致好评,大家有什么意见,欢迎一起讨论讨论。

本文系21ic论坛网友lvyunhua原创,资料下载请点击“阅读原文”。

免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

21ic电子网

扫描二维码,关注更多精彩内容

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭